Optimized Functionality for Super Mobile Apps

Maleknaz Nayebi, Guenther Ruhe
SEDS Laboratory
University of Calgary
Calgary, Canada
Email: {mnayebi, ruhe} @ucalgary.ca

Abstract—Functionality of software products often does not
match user needs and expectations. The closed set-up of systems
and information is replaced by wide access to data of users
and competitor products. This shift offers completely new op-
portunities to approach requirements elicitation and subsequent
planning of software functionality. This is, in particular true for
app store markets. App stores are markets for many small sized
software products which provide an open platform for users to
provide feedback on using apps. Moreover, the functionality and
status of similar software products can be retrieved. While this
is a competitive risk, it is at the same time an opportunity.

In this paper, we envision a new release planning approach
that leverages the new opportunities for decision making. We
propose a new model using bi-criterion integer programming.
We make suggestions for optimized super app functionality that
are based on two key aspects: (i) the estimated value of features,
and (ii) the cohesiveness between newly added features and
cohesiveness between existing and the features to be added. The
information on these attributes comes from reasoning on feature
composition of existing similar apps. The approach is applicable
to the development of new product releases as well as to the
creation of completely new apps. We illustrate the applicability
of our model by a small example and outline directions for future
research.

Keywords-Release planning; app store mining; integer pro-
gramming; new product design; super app design.

I. INTRODUCTION

A paradigm shift in requirements engineering and software
evolution towards data-driven processes in open environments
was projected by Maalej et al. [12]. Ease of access to users
feedback and usage data, the pro-active participation of users
through social media, and the maturity of analytics tools
and algorithms opened new opportunities for requirements
engineering arise. This is particularly true for software app
markets. Big data on similar products, together with access to
customers’ feedback, provide a unique way to develop new
software products based on the success and failure of similar
products. Our previous study with developers and users [15]
showed that app developers look into their competitors to
decide on their software releases and updates. All the available
data openly accessible in the app stores can be used for
planning apps’ evolution.

Release management is a decision-centric process and part
of incremental and iterative software evolution. In particular,
release planning is the process of assigning features to upcom-
ing releases (or iterations) such that the overall product evolu-
tion is optimized. Release planning approaches for answering

what and when to release problems have been modeled and
solved by different researchers and with different formulations,
methods, and solutions. Aspects of release planning for mobile
apps were studied in [25], [15], [14], [3], [17]. However,
none of these studies provided an optimized solution approach
with reference to data analytics for reuse of features and their
cohesiveness.

In this paper, we outline the direction to compose “super”
mobile apps by combining functionality available across exist-
ing products with similar purposes. Deciding on the function-
ality of a new product release is of fundamental importance for
product success. The key dilemma is that often users do not
know what they want or they changed their mind quite often
and quite rapidly. In the case of widely accessible apps and
their existing functionality, one way to approach this problem
is to extract and reuse features that have proven successful
and offer them in conjunction with the current features. We
provide a new formulation for proposing optimized super app
functionality. The formulation applies in the same way to the
brown field and green field product planning of mobile apps:

Brown field design: Design of a new release for an existing
app, and

Green field design: Design of a completely new product
from scratch.

In both cases, the idea is to reuse existing functionality and
to combine it in an innovative way. In particular, we answer
the below research question:

Research question: How to determine value-cohesiveness-
optimized app functionality by reuse of features from similar
apps retrieved in the app store?

The main contribution of the paper is a new method to find
the best set of features for a new release of a mobile app
using optimization techniques. We formulate this search for
optimized apps as a bi-criterion optimization problem. Using
quadratic integer programming [4], we search for the trade-off
between the total value of a release and the total cohesiveness
of the features selected for the new version of an app. We
demonstrate these concepts and the related approach by an
illustrative example.

II. INFORMATION NEEDS

Search for super app functionality is based on various
sources of information. We describe them in the sequel.

This is authors version of the article, Nayebi, M., & Ruhe, G., “Optimized Design of Supper Apps”, International Conference on

requirements Engineering (RE), 2017.


maleknaz.nayebi@gmail.com
Typewritten text
This is authors version of the article, Nayebi, M., & Ruhe, G., “Optimized Design of Supper Apps”, International Conference on requirements Engineering (RE), 2017.


A. Similar apps

App markets provide access to a pool of software products,
some of them are designed for a similar purpose. We call
them similar apps. This gives users the opportunity to use a
similar product if they are dissatisfied with a particular app.
The openness of these platforms on providing meta-data such
as app descriptions, reviews, and app ratings makes it easier
to perform a holistic search for finding similar apps.

When publishing an app in the market, the owners classify
their apps in a specific category. Looking into these categories
is one way to find similar apps. For example, the category
“travel and local” includes a variety of apps for booking hotels,
finding flights, restaurants, etc. The other way to identify
similar apps is to search app stores with specific keywords
pertaining to the desired purpose such as booking a hotel. To
this end, one might search “booking AND hotel” in the app
store.

B. Feature Extraction

Feature extraction of mobile apps was approached either
by mining app descriptions or app reviews [13]. Analyzing
app reviews to extract feature requests and bug reports were
comprehensively approached by Maalej and Nabil [11].

Feature extraction from app descriptions has been studied
in recent years [13], and a method was proposed by Harman
et al. [8] to extract featurelets from app descriptions. The
authors defined featurelets as “a set of commonly occurring
co-located words using bi-grams and then aggregate similar
featurelets into features using clustering [8]. For our proof-
of-concept implementation, we used this method. However,
alternative methods can be used [13]. Mining app descriptions
and app store reviews do not provide a complete set of app
features and looking into alternative information sources has
been recommended [16].

C. Feature value

The question of what constitutes the value of a feature is
difficult to answer. Value definition is context specific and user
specific. A comprehensive software value-map is suggested
by Khurum et al. [10]. Recent studies on mobile apps, used
rating, the number of downloads, the content of reviews, and
sentiment of reviews as the indicator of users’ perceived value.
In the illustrative example provided later in this paper, the
value of app features is determined from crowdsourcing [12].

In the proof-of-concept example, by presenting the app
features to Amazon Mechanical Turk workers (who are con-
sidered knowledgeable in using apps), we ask them to assign
a value between 0 to 100 to each feature. The final feature
value is the average of the values defined by all users. The
value indicates how desirable the feature for a (potential) user
is expected to be.

D. Cohesiveness between pairs of features

There are multiple technical and non-technical benefits from
offering features in conjunction. While cohesiveness is difficult
to measure, we propose a proxy measure combining feature

co-occurrences and apps’ rating. Two features f(n), f(m) are
considered to be (functionally) connected if they often co-
occurred within the set of existing apps, and even more so if
this co-occurrence is happening for apps with high ratings.

In addition to the number of co-occurrences, we also

consider the rating of apps. The app rating is provided by
users in the app market. Rating is expressed on a five-point-
scale ranging from 1 (lowest) to 5 (highest). The rating of
an app(k) is called rating(k) which is the average of all
customer ratings within the apps’ life cycle. The product of
average rating and number of co-occurrence is called feature
cohesiveness. The cohesiveness between two features is the
higher, the more often they co-occur among all the existing
apps and the higher the average rating of these apps considered
for co-occurrence. Formally, for any pair of features f(n) and
f(m)

e a(n,m) represents the number of co-occurrences of
these features among all apps currently available in that
category.

o B(n,m) represents the average rating across all the apps
offering f(n) and f(m) in conjunction.

For example, considering similar apps in the category of
travel and local, the feature search a location and the feature
sort results base on distance from a location often co-exist
in these apps. However, the features counting calories and
searching a location co-occurred only twice across all apps
from the app store. We observed that two features counting
calories and searching a location in the app category of travel
and local co-occurred in two existing App 1 and App 2. App
1 with rating(1) = 3.0 and App 2 with rating(2) = 3.5.
This means that a(n,m) = 2, and S(n, m) = 3.25.

E. Effort estimation

Implementation of features consumes effort. We make the
simplifying assumption of just looking at the total amount
of (estimated) effort needed per feature. Different methods
are applicable for providing estimates [23]. Often, effort
estimation methods are hybrid in the sense that they combine
formal techniques with the judgment and expertise of human
domain experts. For our proof-of-concept example, we used
three context expert app developers and each of them estimated
the effort for implementing each feature in person hours.

III. PROBLEM FORMULATION

Inspired by state of the art release planning methods [19],
we provide a novel formulation for proposing optimized super
app functionality. The key idea is to look at two objectives and
formulating the search for reuse-based app functionality as an
optimization problem:

Objective 1: The total value of an app is defined as the
sum of the features elicited from existing similar apps.
This objective emphasizes the individual attractiveness
of features for users which is the traditional linear value
function used in release planning [21].



Objective 2: The degree of cohesiveness of features mea-
sured by their co-occurrence in existing apps. This ob-
jective is independent of the first one and looks at how
often (quantity), and on which occasions pairs of features
co-occurred in apps within similar context (quality).

The first optimization objective is purely value related. The
actual value of new features is difficult to predict. In the case
of brownfield development, one way to measure feature value
is to look at its usage. Other alternatives were elaborated by
Khurum et al. [10].

The second search objective emphasizes the cohesiveness
of the features as observed from their former occurrence.
Both objectives are independent and important. The projected
value of features is what makes the new release valuable.
The cohesiveness of features ensures that semantic connections
between pairs of “successful” combinations of features should
be maintained. This second objective is important as we are
targeting semantically cohesive apps, not just a collection of
individually high valued but unrelated features as studied for
theme-based release planning [9].

Let F'1 = {f(1)...f(N1)} be a set of features imple-
mented in the current product version called version y.z, and
F2 = {f(N141)... f(N)} the features extracted across a
set of similar apps for being candidates for designing super
app functionality of Version y.z + 1. Each new app release
version y.z+1 is characterized by an N-dimensional Boolean
decision vector = with components x(n) defined as:

.~ Jx(n) =1 if feature f(n) is offered, and

z(n) = {x(n) =0 otherwise M

By definition,

o cach feature f(n) from F'2 has occurred in at least one
of the existing apps, and

e z(n)=1forall n=1.N1.

Each feature f(n) has a perceived individual value called
value(n). Upcoming feature value is inherently difficult to
predict. We consider crowdsourcing, user forums or stake-
holder evaluation as possible options to estimate value. Our
first objective is to maximize the total value of a release. It is
expressed by value function C'1(x) and defined as:

>

n=N1+1...N

Each feature f(n) has an estimated effort called ef fort(n)
needed for its implementation. With an assumed total effort
capacity C'ap available for implementation of version y.z + 1,
all new app releases encoded in vector x need to fulfill the
effort constraint expressed as Equation (3):

D

n=N14+1...N

Cl(z) = value(n) x x(n) (2)

ef fort(n) x z(n) < Cap 3)

This formulation so far looks like a traditional release plan-
ning problem [6] with just one release. Exclusively applying
Equation (2) as an objective for optimization would result in

a composition of features maximizing the total release value.
What we potentially get is a collection of attractive features,
but not necessarily a set of features that have been proven to
be cohesive with regards to the experience.

To address this additional concern, we formulate our second
objective C2(x) with the target to maximize total cohesiveness
of the features selected for the super app functionality. As
outlined above, for all pairs f(n), f(m) of features we use
the product of the number f(n,m) of co-occurrences with
its average rating a(n,m) as a proxy for their cohesiveness.
In other words, the more often two features co-occurred, the
higher their cohesiveness. Also, co-occurrence of two features
in the apps with higher rating increases cohesiveness compared
to apps with lower rating

The objective then is defined as Equation (4) with the
summation taken over all pairs of features f(n), f(m):

C2(x) = Z a(n,m) x B(n,m) x z(n) x x(m) (4)
f(n),f(m)

Consideration of semantic cohesiveness between features
was studied for the purposed theme-based release planning
[9]). The novel part in our formulation is that for the selection
of additional features, the cohesiveness between them, as
well as the connectivity to existing features is taken into
account. This is something that is ignored in all existing release
planning approaches but should be considered important to
ensure features’ cohesiveness.

Both objectives C1(x) and C2(x) are independent and are
competing. While we want to maximize the value, we also
want to maximize the cohesiveness of the features. This is
because best-valued apps are not automatically best in terms
of cohesiveness and vice versa. In other words, we are looking
for Pareto solutions for the bi-objective optimization problem
to maximize (C'1(z), C2(x)).

We investigate the question: “For a given app release, which
set of features should be added to increase the total value of
the app and to maximize the cohesiveness between all pairs
of features of the new release.”

All app releases fulfilling the effort constraint of Equation
(3) are called feasible app releases. An app release =* is a
Pareto solution if no other feasible app release z’ exists that is
better in one criterion (value or cohesiveness) and at the same
time not worse in the other. This is expressed in Equation (5):

i C1(z")
Gi) C2c)
(i) (Cl(z"),C2(x"))

and

For simplicity, we do not look at additional (detailed effort
or technology related) constraints. Note that this technically
would not change the proposed solution approach as we keep
value and cohesiveness as the optimization objectives.



|

Retrieve
! similar apps

Existing 'features
for cohediveness
analysis | l
U
Y

Optimize
feature set

Extract apps’
features

|

Candidate
features

Version

Value assignment
and cohesive-

ness analysis

Fig. 1. Key steps of the process of finding optimized super app functionality.
The two dashed arrows are only applicable for brown field development.

IV. SOLUTION APPROACH

So far, we discussed possible methods for similarity analysis
to find similar mobile apps as well as methods for extracting
mobile app features, effort and value estimation in Section
IT and Section IV. Main steps of the solution approach are
outlined in Figure 1.

For this paper, the emphasis is on the search process for
finding an optimized set of feature for extending app func-
tionality over releases. This problem formulation (Equations
(1) to (5)) by nature is an Integer Quadratic Programming
problem [7]. Each particular vector z with integer variables
as defined in Equation (1) describes a specific composition of
a new app release. The problem has a quadratic component as
it contains combinations of two features as expressed in the
second objective C2(x).

To solve the problem, one can transforms the original
bi-objective optimization problem into a sequence of single
objective problems [4]. Following that, we have transformed
our problem into a sequence of problems G(7):

G(v,z) = Mazx{yx Cl(z)+ (1 —~) x C2(x) : x fulfills (3)}
for all ~ from (0,1) (6)

The result of Equation (6) is a set of features for to
be implemented in a new app release. From multi-criteria
integer programming [4] it is known that the feature sets
we receive from solving a series of the parametric single-
criterion problems are Pareto optimal. For computing optimal
(super) app releases for our proof-of-concept evaluation, we

used an academic license of the proprietary Gurobi optimizer
[1]. While the solution approach does not depend on this tool,
Gurobi has proven to be both computationally efficient and
scalable [1]. In a comparative analysis with top commercial
solvers CPLEX (from IBM), XPRESS (from Fico) and also
comparing to open source solvers such as CBC, Gurobi
performed best concerning run time and the percentage of
solved instances from a pool of benchmark problems'.

V. PROOF-OF CONCEPT EVALUATION

We demonstrate the key idea of the approach by a
small illustrative example which was taken from a more
comprehensive case study formerly conducted [19]. The
application context is Over the Top TV (OTT) apps (such as
Netflix or Hulu) taken from the Android app store (Google
Play). In this category, we gathered a set of 84 similar
apps. Using the method proposed by Harman et al. [8], we
extracted 10 features of OTT apps (which is a random subset
of the total set of 34 features originally extracted). For all
these features, the observed implementation effort and the
feature value (based on crowdsourcing) are shown in Table I.
We applied methods for crowdsourced feature evaluation and
effort estimation as they were described in Section II. We
investigate the question:

For a given OTT app and for given capacity to develop the
next release, which features should be added to increase
the total value of the app and to maximize the total feature
cohesiveness?”

To illustrate our main idea, we assume that the first four
features listed in Table I constitute the current version Version
3.7 of the app under consideration, denoted by App*. That
means, App* currently has features f(1), f(2), f(3), f(4).
Different combinations of features f(5), f(6), ...,f(10) are
candidates for creating the next release Version 3.8.
Following the problem formulation in Section III to answer
the above question we consider:
(i) The perceived individual value of each candidate feature
£(5), f(6),....f(10), and

(i1) The degree of cohesiveness between all the pairs features.
This includes the cohesiveness between existing features
f(1), £(2), f(3), f(4) and newly added features as well
as the cohesiveness of the newly added features with
each other.

For (ii), the assumption is that features that have been
occurred together in the past in (successful) competitor apps
are good candidates to offer them in conjunction again. One
reason might be that the two features depend on each other.
Another one is that their co-occurrence creates value synergy.
We provided the matrix of feature co-occurrence and average
ratings as Table II. Therein, the values above the diagonal of
the main matrix represent the average rating values (3(n, m)),
the ones below the diagonal represent the number of co-
occurrences (a(n,m)). We observe that feature pairs f(3),

Uhttp://plato.asu.edu/ftp/milpc_tables/1thread.res


http://plato.asu.edu/ftp/milpc_tables/1thread.res

TABLE 1
FEATURE SET OF THE ILLUSTRATIVE EXAMPLE FOR OPTIMIZED SUPER
APP DESIGN AND ITS EVALUATION. FEATURES F(1), F(2), F(3) AND F(5)
HAVE BEEN ALREADY IMPLEMENTED.

D Features Value Effort (in
person hours)
f(1) | Live channel coverage 58.2 104
f(2) | Support of multi-screen 77.4 27.7
f3) Swtihing between horizontal and 491 103
vertical views
f(4) | EPG 28.6 3.8
f(5) | Aspect ratio change 63.5 37.9
f(6) | Remote control 379 26.3
f(7) Support for devices without a touch 438 20.4
screen
f(8) | Video on demand 91.3 53.8
f(9) | YouTube integration 26.3 13
f(10)| Capability to select source signal 57.3 25.8

f(8) and f(5), f(8) occur most frequently. At the same time,
the pair f(7), f(8) co-occurs in one app with Rating 5.

Having feature value, cohesiveness and estimated imple-
mentation effort for features as discussed in Section II, we
assumed Cap = 58.3 as the implementation effort budget for
Version 3.8. Then, we applied formulation (6) and obtained
four optimized alternatives for extending the current release
Version 3.7 by adding features to create the new release
Version 3.8:

Optimized Alternative O1: Adding f(9) and f(10) with
(Cl(x), C2(x)) = (296.9, 96.6)

Optimized Alternative O2: Adding f(7) and f(10) with
(Cl(x), C2(x)) = (314.4, 71.3)

Optimized Alternative O3: Adding f(4) and f(9) with
(Cl(x), C2(x)) = (303.1, 87.9)

Optimized Alternative O4: Adding f(4) and f(7) with

(C1(x), C2(x)) = (320.6, 61.5)

All the four optimized feature sets are best in combining
both value and cohesiveness for a new app release. That
means, there is no alternative being better in one aspect and
not worse in the other.

To visualize this, we formed all the possible feature combi-
nations of f(5), f(6), f(7), f(8), f(9), and f(10) which needs
implementation effort less than the assumed capacity of 58.3.
We plotted the value and cohesiveness of these combinations
along with the four optimized alternative solutions in Figure
2. In Figure 2, Optimized Alternative 1 to 4 are denoted by
O1 to O4. A1, A2, A3 and A4 are non-optimal alternatives
of feature combinations with required effort less than the
available capacity (= 58.3). Al is composed of {f(7), f(9)},
A2 is {f(6), f(9)}, A3 composed of {f(6), f(7)}, and A4
is composed of {f(6), f(10)}.

VI. RELATED WORK

Sophisticated analysis on the mobile apps, including re-
views, ratings, the number of downloads, and dynamic changes
in the competitors’ apps provides opportunities for proactive
analysis and decision making within this context [20], [13].
The results of different studies showed that the user’s feedback

TABLE II
COHESIVENESS 3(n, m) (BELOW THE DIAGONAL) AND AVERAGE RATING
a(n, m) (ABOVE THE DIAGONAL) FOR ALL PAIRS OF THE 10 FEATURES.

Features Q) Q] fH] TG ] {6 (D] 1®] 19
1)
f(2)
f3)

f4)
f5)
£(6)
£((7)
£(8)
£(9)
f(10)

£(10)

OO | OO | O

100

S0

80

70

Cohesiveness
=
[

&80

50
270

280 2590 300

Value

310 320 330

Fig. 2. Existing apps and optimized super app.

in the form of ratings and reviews have an impact on the
app development decisions [20] and tools were investigated
to assist app developers in reacting to their customers more
efficiently [5]. App store mining and analysis has been widely
studied in the context of software engineering from different
aspects and reuse of code was discussed in number of studies
[13]. However, requirement engineering and design of apps by
reusing features from the other apps are rather untouched.

Seyeff et al. [22] studied the usage of Facebook to overcome
current limitations of requirements’ engineering (RE) tools in
terms of the end user acceptance and involvement. They found
that existing features of Facebook, e.g., the possibility to build
dedicated groups, comment on posts, or like posts, support RE
activities such as requirements elicitation, prioritization, and
negotiation. We believe our proposed method, is the first step
toward systematically integrating the voice-of-the customer
into optimized mobile app design.

In a recent systematic literature survey on release planning
models, Ameller et al. [2] confirmed the increasing trends
to look at multiple objectives. In line with that, in the
design of super app functionality, we looked into feature
value and cohesiveness between features as the objectives.
Release planning of mobile apps were studied [25], [15], [14],
[3], [17]. However, none of these studies provide a formal
formulation considering the established state of the art release
planning or prioritization methods [21], [24] and often refer



to prioritization of bug fixes and features as release planning
of mobile apps.

VII. LIMITATIONS

When looking at cohesiveness of feature combinations,
we are currently limited to pairs of two features. However,
additional synergies might occur for larger combinations (e.g.,
three or four features co-occurred often together). Also, detect-
ing similar apps and their features is not an easy task and need
further elaboration. Looking into the app store categories does
not guarantee the similarity as the functionality range of apps
in the same category is rather broad. However, searching for
specific keywords, using domain experts, and snowballing the
app store recommendations can be used in addition.

The scalability of the method needs to be proven. This is
not only a computational but also an information retrieval
and validity problem. Finding similar features and determining
their value and cohesiveness is computationally intensive. We
foresee the need for more comprehensive evaluation of the
applicability of the proposed solution idea and have started
applying the process to real-world app design [18].

VIII. NEXT RE RESEARCH

Offering the most attractive functionality to users is the
ultimate goal of app release planning. We proposed a model
to frame the functional design of apps as a systematic
and optimization based decision-making process. So far, the
limited proof-of-concept evaluation shows the applicability
of our model to both new app development and extending
existing apps with new functionality. The proposed model and
its algorithmic implementation are flexible to accommodate
more complex synergies and types of feature dependencies.
With a powerful solver like Gurobi, solving quadratic integer
programming is scalable and is expected to solve problems
with several hundred of features.

Our initial idea was presented for brownfield app develop-
ment considering an existing product in the market. However,
the same idea can also be applied to enhance the functionality
of a new app (Greenfield app design). The only difference is
that the current set of existing features in the app is empty. We
evaluate the above ideas trough fully-fledged real-word case
studies as the next steps of this research.

Finally, the current model looks exclusively at features that
have been occurred somewhere before. However, there might
be new features coming from other information sources. As
outlined and evaluated by Nayebi et al. [18], features can
be extracted also from the mining of social media platforms
such as Twitter. by adjusting the cohesiveness function C2(x)
to reflect “requirements co-occurrence” instead of features’
co-occurrence, the formulation and solution approach can
be applied in the same way for this more comprehensive
application scenario.

ACKNOWLEDGMENTS

This research was partially supported by Alberta Innovates
Technology Futures AITF (first author) and by the Natural Sci-

ences and Engineering Research Council of Canada, NSERC
Discovery Grant 250343-12 (second author).

REFERENCES

[1] Gurobi optimization.
2016.

[2] D. Ameller, C. Farré, X. Franch, and G. Rufian. A survey on software
release planning models. In Proc. PROFES. Springer LNCS, 2016.

[3] A. Ciurumelea, A. Schaufelbiihl, S. Panichella, and H. Gall. Analyzing
reviews and code of mobile apps for better release planning.

[4] J. Climaco, C. Ferreira, and M. E. Captivo. Multi-criteria integer
programming: An overview of the different algorithmic approaches. In
Multicriteria analysis, pages 248-258. Springer, 1997.

[51 A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall. What would users change in my
app? summarizing app reviews for recommending software changes. In
Proc. FSE, pages 499-510. ACM, 2016.

[6] D. Greer and G. Ruhe. Software release planning: an evolutionary and
iterative approach. [Information and Software Technology, 46(4):243—
253, 2004.

[71 R. Gupta and M. C. Puri. Bicriteria integer quadratic programming
problems. Journal of Interdisciplinary Mathematics, 3(2-3):133-148,
2000.

[8] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: Msr
for app stores. In Proc. MSR 2012, pages 108-111. IEEE Press, 2012.

[9] M. R. Karim and G. Ruhe. Bi-objective genetic search for release
planning in support of themes. In Proc. SSBSE, pages 123—137. Springer,
2014.

[10] M. Khurum, T. Gorschek, and M. Wilson. The software value map—an
exhaustive collection of value aspects for the development of soft-
ware intensive products. Journal of Software: Evolution and Process,
25(7):711-741, 2013.

[11] W. Maalej and H. Nabil. Bug report, feature request, or simply praise?
on automatically classifying app reviews. In Proc. RE2015, pages 116—
125. IEEE, 2015.

[12] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe. Toward data-driven
requirements engineering. /IEEE Software, 33(1):48-54, 2016.

[13] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app
store analysis for software engineering.

[14] S. Mcllroy, N. Ali, and A. E. Hassan. Fresh apps: an empirical study
of frequently-updated mobile apps in the google play store. Empirical
Software Engineering, 21(3):1346-1370, 2016.

[15] M. Nayebi, B. Adams, and G. Ruhe. Release practices for mobile apps—
what do users and developers think? In Proc. SANER, volume 1, pages
552-562. IEEE, 2016.

[16] M. Nayebi, H. Cho, H. Farrahi, and G. Ruhe. App store mining is not
enough. In Proc. ICSE. ACM, 2017.

[17] M. Nayebi, H. Farrahi, and G. Ruhe. Analysis of marketed versus not-
marketed mobile app releases. In Proc. RELENG, pages 1-4. ACM,
2016.

[18] M. Nayebi, M. Marbouti, R. Quapp, F. Maurer, and G. Ruhe. Crowd-
sourced exploration of mobile app features: A case study of the fort
mcmurray wildfire. In Proc. ICSE Conference, pages 552-562. IEEE,
2017.

[19] M. Nayebi and G. Ruhe. Analytical product release planning. In The
Art and Science of Analyzing Software Data, pages 550-580. Morgan
Kaufmann, 2015.

[20] F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia. User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps. In Proc.
ICSME, pages 291-300. IEEE, 2015.

[21] G. Ruhe. Product release planning: methods, tools and applications.
CRC Press, 2010.

[22] N. Seyff, I. Todoran, K. Caluser, L. Singer, and M. Glinz. Using popular
social network sites to support requirements elicitation, prioritization and
negotiation. Journal of Internet Services and Applications, 6(1):1, 2015.

[23] M. Shepperd. Software project economics: A roadmap.

[24] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem, and M. U.
Shafique. A systematic review on strategic release planning models.
Information and software technology, 52(3):237-248, 2010.

[25] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta. Release
planning of mobile apps based on user reviews. In Proc. ICSE, pages
14-24. ACM, 2016.

http://www.gurobi.com. Accessed: November

This is authors version of the article, Nayebi, M., & Ruhe, G., “Optimized Design of Supper Apps”, International Conference on

requirements Engineering (RE), 2017.


http://www. gurobi.com
maleknaz.nayebi@gmail.com
Typewritten text
This is authors version of the article, Nayebi, M., & Ruhe, G., “Optimized Design of Supper Apps”, International Conference on requirements Engineering (RE), 2017.


	Introduction
	Information Needs
	Similar apps
	Feature Extraction
	Feature value
	Cohesiveness between pairs of features
	Effort estimation

	Problem formulation
	Solution Approach
	Proof-of concept evaluation
	Related Work
	Limitations
	Next RE Research
	References

