
SOFTWARE ENGINEERING DECISION
SUPPORT –

A NEW PARADIGM FOR LEARNING
SOFTWARE ORGANIZATIONS

Günther Ruhe
University of Calgary
ruhe@ucalgary.ca

http://sern.ucalgary.ca/~ruhe/

Abstract: Software development and evolution is characterized by multiple
objectives and constraints, by a huge amount of uncertainty, incomplete
information and changing problem parameters. Success of software
development very much depends on providing the right knowledge at the
right time, at the right place, and for the appropriate person. Experience
factory and organizational learning approaches are increasingly used to
improve software development practices.

The paradigm of Software Engineering Decision Support (SEDS) goes
beyond the concept of reusing models, knowledge or experience. For more
focused problem domain, emphasis is on providing methodology for
generation, evaluation, prioritization and selection of solution alternatives.
Typically, modelling, measurement, empirical and simulation-type
investigations are combined with intelligent methods of analysis and
reasoning to predict the impact of decisions on future life-cycle performance.

This paper describes fundamental principles and expectations on SEDS. A
comparison with knowledge management-based approaches is performed for
the areas of requirements negotiation and COTS selection. The initial
hypothesis on the expected benefits of SEDS are discussed for the two case
study examples in the area of requirements negotiations.

1. Introduction
The need for further development of software engineering practices within
companies adds to the demand for systematic knowledge and skill
management in combination with active usage of this knowledge to support
decision-making at all stages of the software lifecycle. With continuous
technological change, globalization, business reorganizations, e-migration,
etc. there is a continuous shortage of the right knowledge at the right place
at the right time. Subsequently, strategic and operational decisions
concerning products, processes, technologies or tools and other resources,

mailto:ruhe@ucalgary.ca
http://sern.ucalgary.ca/~ruhe/

2 Guenther Ruhe

are far from being mature. Reactive management is the rule, and pro-active
analytical performance is more the exceptional case.

Experience factory and organizational learning approaches are increasingly
used to improve software development practices [15], [18]. The main idea of
experience based learning and improvements are to accumulate, structure,
organize and provide any useful piece of information being reused in
forthcoming problem situations [2]. Reuse of know-how is essentially
supported by the case-based reasoning methodology [1]. However, software
development and evolution typically is large in size, of huge complexity,
with a large set of dynamically changing problem parameters. In this
situation, reuse of experience alone is a useful, but non-sufficient approach
to enable proactive decision analysis. Diversity of project and problem
situations on the one hand, and costs and availability of knowledge and
information organized in a non-trivial experience (or case) base on the other
hand, are further arguments to qualify decision-making.

The idea of offering decision support always arises when decisions have to
be made in complex, uncertain and/or dynamic environments. The process
of software development and evolution is an ambitious undertaking. In
software development and evolution, many decisions have to be made
concerning processes, products, tools, methods and techniques. From a
decision-making perspective, all these questions are confronted by different
objectives and constraints, a huge number of variables under dynamically
changing requirements, processes, actors, stakeholders, tools and
techniques. Very often, this is combined with incomplete, fuzzy or
inconsistent information about all the involved artefacts, as well as with
difficulties regarding the decision space and environment.

Typically, a concrete decision support system is focused on a relatively
narrow problem domain. There are two kinds of existing contributions to
Software Engineering Decision Support. Firstly, an explicitly mentioned
effort to provide decision support in a focused area of the software life
cycle. Examples are decision support for reliability planning [17] or decision
support for conducting inspections [9]. Secondly, this encompasses research
results that indirectly contribute to decision support, although not explicitly
stated as such. Basically, most results from empirical software engineering,
software measurement or software process simulation can be seen to belong
to this category.

The main purpose of this paper is to position SEDS as both complementary
and supplementary to experience factory or learning software organization
approaches. The concrete relationship is problem and context dependent.

3 Guenther Ruhe
The paper is subdivided into five parts. Following this introduction is a
characterization of Software Engineering decision-making. Software
Engineering decision support systems (SE-DSS) couple the intellectual
resources of individuals and organizations with the capabilities of the
computer to improve the quality of solutions. They are described in more
detail in part 3. This is followed in part 4 by an analysis of the concrete
examples for offering support for crucial decisions. One example concerns
requirements selection. The other is related to support in software release
planning. Finally, the summary and an outlook are presented in part 5.

2. Why do We Need Support for Making Decisions in Software
Engineering?

Software Engineering is defined as [21]

1. the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software, that is, the
application of engineering in software, and

2. the study of approaches as in 1.

Both parts of this definition imply a large number of detailed questions and
necessary decisions on how to do that, i.e., they are concerned with SEDS.
The demand for decision support covers the complete life cycle. For the
analysis, design, construction, testing and evolution phase, decision makers
need support to describe, evaluate, sort, rank, select or reject candidate
products, processes, resources, tools and technologies. Example decisions
are related to:

� Requirements: Which functional and non-functional requirements
should be chosen according to the given budget and time constraints
[16]? How to assign different requirements to releases under the
assumption of an incremental development paradigm [7]?

� Architecture and design: How should the selection between
candidate architectures be made to ensure the best fit in terms of
software reliability, performance, security, and usability [22]? How to
integrate available components and COTS products into a system
design [14]?

� Adaptive and corrective maintenance: Which components need
improvement during the maintenance cycle because of changing
contexts and requirements [24]? Which modules are potentially low
qualified during the development phase and need special emphasis
during maintenance [20]?

4 Guenther Ruhe

� Project planning and control: What should the reaction be to
shortages on budget, time or available resources? Which trade-offs are
acceptable to deliver the product earlier? How should deficits in staff
be compensated? How do we respond to violations of quality
constraints for intermediate products?

� Verification and validation: Which technique is most appropriate?
Which artefacts should be investigated? When to terminate testing or
inspections? Is there any need for re-inspections? How to integrate
components for system testing [5]?

Decision-making is a well-established discipline with origins and close
interactions with many other disciplines such as economics, operations
research, game theory, probability theory, control theory, psychology, and
cognitive science. The emphasis of decision support is to provide as much
background as possible for actually making the decision. This is a very
essential input for the actual decision-maker (typically, a completely
different person).

Decision support has been successfully designed, developed and applied in
many areas such as logistics, manufacturing, health care, forestry or
agriculture. Why do we also need decision support in software engineering?
Some of the major concerns we encountered for current real-world
situations in software development and evolution are summarized below:

� Decision problems are often poorly understood and/or described.

� Decisions are done at the last moment and/or under time pressure.

� Decisions are not relying on empirically evaluated models, best
knowledge and experience and a sound methodology.

� Decisions are made without considering the perspectives of all the
involved stakeholders.

� Decisions are not explained or made transparent to those involved.

What are the expectations and requirements for systems - offering SEDS?
We define a set of “idealized” requirements on support systems that
combine the intellectual resources of individuals and organizations with the
capabilities of the computer to improve effectiveness, efficiency and
transparency of decision-making Depending on the concrete problem topic
and the usage scenario of the DSS (on-line versus off-line support,
individual versus group-based decision support, routine versus tactical
versus strategic support), different aspects will become more important than
others.

5 Guenther Ruhe
(R1) Knowledge, model and experience management of the existing body
of knowledge in the problem area (in the respective organization).

(R2) Integration into existing organizational information systems (e.g.,
ERP systems).

(R3) Process orientation of decision support, i.e., consider the process how
decisions are made, and how they impact development and business
processes.

(R4) Process modeling and simulation component to plan, describe,
monitor, control and simulate (“what-if” analysis) the underlying processes
and to track changes in its parameters and dependencies.

(R5) Negotiation component to evolutionary find and understand
compromises.

(R6) Presentation and explanation component to present and explain
generated knowledge and solution alternatives in various customized ways
to increase transparency.

(R7) Analysis and decision component consisting of a portfolio of
methods and techniques to evaluate and prioritize generated solution
alternatives and to find trade-offs between the conflicting objectives and
stakeholder interests.

(R8) Intelligence component to support knowledge retrieval, knowledge
discovery and approximate reasoning.

(R9) Group facilities to support electronic communication, scheduling,
document sharing, and access to expert opinions.

3. Software Engineering Decision Support Systems o- Basic
Architecture

Software Engineering Decision Support Systems (SE-DSS) can be seen as
an extension and continuation of the Software Engineering experience
factory and LSO approaches. In addition to collecting, retrieving and
maintaining models, knowledge, and experience in the form of lessons
learned, SE-DSS generates new insights from on-line investigations in a
virtual (model-based) world, from offering facilities to better structure of the
problem as well as in ranking and selecting alternatives. For this purpose,
sound modeling and knowledge management is combined with a variety of
techniques of analysis, simulation, and decision-making.

6 Guenther Ruhe

While learning the software organization approach is mainly addressing the
learning aspect from an organizational perspective, the emphasis of real-
world SE DSS is typically on more focused aspects of the software
engineering life-cycle, e.g., resource planning, COTS selection or
requirements negotiation.

The underlying hypotheses of using Software Engineering Decision Support
Systems are:

Hypothesis 1: SE-DSS enables making more effective decisions
(improved quality).

Hypothesis 2: SE-DSS enables - making more efficient solutions.

Hypothesis 3: SE-DSS allows more transparent decisions (to be better
understood by involved individuals), reflecting trade-offs between
conflicting criteria or stakeholder opinions.

Hypothesis 4: SE-DSS can be used to propose more robust decisions
(stable under slightly changing environments).

Hypothesis 5: SE-DSS in combination with proper modelling,
optimization and simulation facilities can be used to generate and evaluate
new solution alternatives and to better react on changes in the problem
parameters.

Ideally, a SE-DSS should have simulation facilities to conduct scenario-
based experiments in a virtual world. Simulation models can be used to
systematically develop and evaluate improvement suggestions in a virtual
(laboratory-like) setting. Similar to systematic experiments in the real world,
a simulation model can be used to investigate whether changes in model
parameters or model structure improve model behaviour with respect to
specified goals or thresholds. In order to do so, proposed changes of the real
system are implemented in the model and then compared to the baseline
behaviour. If several improvements are suggested, the one with the highest
impact can be identified. In addition to that, the effect of combining several
improvement suggestions can be analysed [11].

7 Guenther Ruhe

Figure 1. Principal Architecture of a Software Engineering Decision Support System.

The principal architecture of a SE-DSS is shown in Figure 1. Real-world
decisions in planning, development or evolution processes in Software
Engineering are done by humans. All support is provided via a graphical
user interface. Experts and their human intelligence is integrated via group
support facilities. The intelligence of the support is based on a
comprehensive model, knowledge and experience. The more reliable and
valid the models are, the more likely we can expect good support. The
accompanying suite of components interacts with the model, knowledge and
experience base. The suite encompasses tools for modeling, simulation, as
well as decision analysis. Furthermore, intelligent components for
reasoning, retrieval and navigation are added to increase efficiency and
effectiveness of the support.

Graphical user interface & group supportGraphical user interface & group support

Model, knowledge
& experience base

Explanation
component

Presentation
component Negotiation

component
Analysis &
decision

component

Process
modeling &
simulation
component

Reasoning &
retrieval

component

Intelligent decision support

Model, knowledge
& experience base
Model, knowledge
& experience base

Explanation
component
Explanation
component

Presentation
component

Presentation
component Negotiation

component
Negotiation
component

Analysis &
decision

component

Analysis &
decision

component

Process
modeling &
simulation
component

Process
modeling &
simulation
component

Reasoning &
retrieval

component

Reasoning &
retrieval

component

Intelligent decision support

Electronic process guidePlanningProject
goals

Project plan

Software
evolution

Program
variants

Change
requirement

Executable
program

Software
developmentSpecification

Electronic process guidePlanningProject
goals

Project plan

Software
evolution

Program
variants

Change
requirement

Executable
program

Software
developmentSpecification

PlanningProject
goals

Project planPlanningPlanningProject
goals

Project
goals

Project plan

Software
evolution

Program
variants

Change
requirement

Software
evolution
Software
evolution

Program
variants
Program
variants

Change
requirement

Change
requirement

Executable
program

Software
developmentSpecification Executable

program
Executable

program
Software

development
Software

developmentSpecificationSpecification

8 Guenther Ruhe

4. Decision Support in Requirements Negotiations

4.1 Decision Support for Requirements Negotiations
Defining, prioritising, and selecting requirements are problems of
tremendous importance. In [16], a new approach called Quantitative
WinWin for decision support in requirements negotiation is studied. The
difference to Boehm’s [4] groupware-based negotiation support is the
inclusion of quantitative methods as a backbone for better and more
objective decisions. Like Boehm’s original WinWin, Quantitative WinWin
uses an iterative approach, with the aim to increase knowledge about the
requirements at each iteration.

The overall method uses the Analytical Hierarchy Process [19] for a
stepwise determination of the stakeholders’ preferences in quantitative
terms. These results are combined with methods for early effort estimation,
in our case using the simulation prototype GENSIM [10], to evaluate the
feasibility of alternative requirements subsets in terms of their related
implementation efforts. As a result, quantitative WinWin offers decision
support for selecting the most appropriate requirements based on the
preferences of the stakeholders, the business value of requirements and a
given maximum development effort.

How can the hypotheses formulated in chapter 3 work in this case? We
don’t have a quantitative evaluation yet, but we can briefly discuss the main
arguments supporting the formulated hypotheses. The comparison is
between using a DSS and subjective decision-making without any
(quantitative) tool support:

Hypothesis 1: Improved quality: Quantitative Win-Win is an evolutionary
approach taking into account all the information available at that moment to
find the most appropriate subsets of requirements. The underlying
algorithms are well established. The quality of the solutions provided mainly
depends on the quality of the input data and the input model. However, as
the used solution algorithms are objective, results should be better than
those based on subjective selection of requirements. In addition to that, the
system will provide a set of candidate solutions. Among them, the actual
decision-maker can chose from.

Hypothesis 2: Efficiency: Effort to generate solutions related to their
quality is improved under the assumption that models and relevant data are
available. This needs an upfront investment, especially to create the effort
estimation based on simulation runs.

9 Guenther Ruhe
Hypothesis 3: Transparency: From the application of Quantitative Win-
Win you will get a preference structure among all the solutions generated.
The preference is a result of systematic and pair-wise comparison between
stakeholder and the requirements class alternatives. The final selection of
requirements can be exactly linked to the chosen preference structure.

Hypothesis 4: Stability: Stability of the chosen solutions can easily be
checked by computation of the stability intervals. This is relatively easy
because of the power of the underlying algorithms (as opposed to subjective
judgements to evaluate solutions).

Hypothesis 5: Flexibility: Quantitative Win-Win allows for following
scenarios and varying problem parameters. Any changes in effort estimates,
priorities or other problem parameters can be easily investigated with
Quantitative WinWin. This also enables the generation of new solution
alternatives.

4.2 Decision Support for Release Planning in Incremental
Software Development

To achieve higher flexibility and to better satisfy actual customer
requirements, there is an increasing tendency to develop and deliver
software in an incremental fashion. In adopting this process, requirements
are delivered in releases. Thus, a decision has to be made on which
requirements should be delivered and in which release. Three main
considerations that need to be taken into account are the technical
precedence constraints inherent in the requirements, the typically conflicting
priorities as determined by the representative stakeholders, as well as the
balance between required and available effort. The technical precedence
constraints relate to situations where one requirement cannot be
implemented until another is completed or where one requirement is
implemented in the same release as another. Similarly, certain requirements
should be implemented in the same release. Stakeholder preferences may be
based on the perceived utility or urgency of delivered requirements to the
different stakeholders involved.

A method called EVOLVE is presented in [6] for optimally allocating
requirements to increments; Methodologically, it is relies mainly on genetic
algorithms, the principles of incremental and evolutionary software process
models and aspects of greedy algorithms and the Analytic Hierarchy
Process. EVOLVE typically generates a small set of most promising
candidate solutions from which the actual decision-maker can choose.

10 Guenther Ruhe

We briefly discuss the main contributions of EVOLVE in light of the above
five hypotheses. The comparison again is between using a DSS and
subjective decision-making without any (quantitative) tool support:

Hypothesis 1: Improved quality: The proposed planning problem is highly
complex (NP-complete) and cannot be expected to be solved adequately by
individual judgement and trial and error type methods. Even Greedy-type
heuristics are not competitive in terms of quality.

Hypothesis 2: Efficiency: Effort to generate solutions related to their
quality is much lower than for any other method

Hypothesis 3: Transparency: The underlying fitness score function of
EVOLVE guarantees optimal balancing between different stakeholder
preferences, and this makes the proposed transparency.

Hypothesis 4: Stability: Stability of the chosen solutions can be judged
from the different runs of the evolutionary algorithm (eventually, with
varying crossover and mutation rates).

Hypothesis 5: Flexibility: EVOLVE allows investigation of any changes
in requirements, priorities or other problem parameters. This enables the
generation of new solution alternatives. Furthermore, variations of the
weighting parameter in the objective function result in offering a set of most
promising candidate solutions.

5. Summary and Conclusions
There are very good reasons for offering support for making decisions at the
various stages of software development and evolution. Most of the related
problems are very complex including different stakeholder perspectives and
constraints. Mostly, decisions have to be made under uncertainty and
incompleteness of information. Nevertheless, making good decisions is of
tremendous importance for developing software faster, cheaper and of
higher quality.

Currently, there is an increasing effort not only to measure or model certain
aspects of the development processes, but to go further and integrate all
available data, information, knowledge and experience with a sound
methodology to provide the backbone for making good decisions. This
mainly includes searching for all the objectives and constraints that
influence a decision as well as elaborating on the defined solution space for
possible courses of action. Typically, the different courses of action are non-
comparable because of the different involved perspectives and objectives.

11 Guenther Ruhe
This is exactly the borderline between offering decision support as
addressed in the article, and real-world decision making selecting among a
range of alternative solutions generated by the intelligent pre-processing
steps of SEDS.

As characterized by [23], decision support is most appropriate for semi-
structured and unstructured problems with emphasis on managerial control.
What can be expected from decision support in the area of software
engineering is higher decision quality; improved communication between all
involved parties, increased productivity, time savings, and improved
customer satisfaction. To achieve this goal, further effort should focus on (i)
advancing SEDS methodology, especially by integrating aspects of
decision-making under uncertainty, (ii) developing knowledge and
experience-based software engineering decision support systems offering
intelligent support on demand and via the web, (iii) further implementation
and industrial evaluation of SEDS methodology and SE-DSS’s, and (iv)
evaluation of the underlying research hypotheses one to four describing the
impact of SEDS on software development and evolution.

Acknowledgement
The author would like to thank the Alberta Informatics Circle of Research
Excellence (iCORE) for the financial support of this research. Special
thanks to the reviewers for their valuable comments that contributed to an
improved version of the paper.

References
[1] K.D. Althoff, “Case-Based Reasoning”, in: Handbook of Software

Engineering and Knowledge Engineering (SK Chang, ed), Vol. 1, pp
549-588.

[2] V. Basili, G. Caldiera, D. Rombach, “Experience Factory”. In: J.
Marciniak: Encyclopedia of Software Engineering”, Volume 1, 2001,
pp 511-519.

[3] B.W. Boehm, “A Spiral Model of Software Development and
Enhancement”, IEEE Computer, 21 (5), pp. 61-72, 1988.

[4] B.W. Boehm, P. Grünbacher, B. Briggs, “Developing Groupware for
Requirements Negotiation: Lessons Learned”, IEEE Software,
May/June 2001, pp. 46-55.

[5] L.C. Briand, J. Feng, Y. Labiche, “Experimenting with Genetic
Algorithm to Devise Optimal Integration Test Orders”, Technical

12 Guenther Ruhe

Report Department of Systems and Computer Engineering, Software
Quality Engineering Laboratory Carleton University, 2002.

[6] L.C. Briand, K. El-Emam, B. Freimut, O.Laitenberger, “A
comprehensive evaluation of capture-recapture models for estimating
software defect content”, IEEE Transactions on Software Engineering,
vol.26 (2000), pp 518-540.

[7] D. Greer, G.Ruhe, “Software Release Planning: An Evolutionary and
Iterative Approach”, submitted to IST (2002).

[8] H.W. Hamacher, G. Ruhe, “On Spanning Tree Problems with Multiple
Objectives”. Annals of Operations Research 52(1994), pp 209-230.

[9] J. Miller, F. Macdonald, J. Ferguson, “ASSISTing Management
Decisions in the Software Inspection Process”, Information
Technology and Management, vol.3 (2002), pp 67-83.

[10] D. Pfahl.: “An Integrated Approach to Simulation-Based Learning in
Support of Strategic and Project Management in Software
Organisation”. Ph.D. thesis, University of Kaiserslautern, Department
of Computer Science, October 2001.

[11] D. Pfahl, G. Ruhe, "System Dynamics as an Enabling Technology for
Learning in Software Organisations", 13th International Conference on
Software Engineering and Knowledge Engineering. SEKE'2001,
Skokie: Knowledge Systems Institute, 2001, pp 355-362.

[12] S. Pfleeger, “Making Goog Decisions: Software Development and
Maintenance Projects”, Tutorial at 8th IEEE Symposium on Software
Metrics, 2002.

[13] G. Ruhe, “Software Engineering Decision Support: Methodology and
Applications”. Appears in: Innovations in Decision Support Systems
(Ed. by Tonfoni and Jain), Springer 2003.

[14] G. Ruhe, "Intelligent Support for Selection of COTS Products",
appears in: Proceedings of the Net.ObjectDays 2002, Erfurt, Springer
2003.

[15] G. Ruhe, “Learning Software Organisations”. In: Handbook of
Software Engineering and Knowledge Engineering (S.K. Chang, ed.),
World Scientific Publishing 2001, Vol 1, pp 663-678.

[16] G. Ruhe, A. Eberlein, D. Pfahl, “Quantitative WinWin - A New
Method for Decision Support in Requirements Negotiation,

13 Guenther Ruhe
Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering (SEKE'2002), pp 159-166

[17] I. Rus, J.S. Collofello, “A Decision Support System for Software
Reliability Engineering Strategy Selection”, Proceedings of the 23rd
Annual International Computer Software and Applications COMPSAC
99, Scottsdale, AZ, October 1999, pp 376-381.

[18] I. Rus, M. Lindvall, “Knowledge Management in Software
Engineering, IEEE Software May/June 2002, pp 26-38.

[19] T.L. Saaty, “The Analytic Hierarchy Process”, Wiley, New York,
1980.

[20] N.F. Schneidewind, “Software Quality Control And Prediction
Model for Maintenance”, Annals of Software Engineering, vol. 9
(2000), pp 79-101.

[21] SEWBOK. Guide to the Software Engineering Body of Knowledge.
Version 0.95. IEEE Computer Society, May 2001.

[22] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, “Quality
Attribute Driven Selection of Software Architecture Structures”,
Proceedings of the First Workshop on Software Engineering Decision
Support, SEDECS’2002, Ischia, pp 819-826.

[23] E. Turban, J.E. Aronson, “Decision Support Systems and Intelligent
Systems”, Prentice Hall, 2001.

[24] G. Visaggio, (2000) “Valued-Based Decision Model For Renewal
Processes in Software Maintenance”, Annals of Software Engineering,
vol.9 (2000), 215-233.

	Introduction
	Why do We Need Support for Making Decisions in Software Engineering?
	Software Engineering Decision Support Systems o- Basic Architecture
	Decision Support in Requirements Negotiations
	Decision Support for Requirements Negotiations
	Decision Support for Release Planning in Incremental Software Development

	Summary and Conclusions

