
Failure Prediction in Crowdsourced Software Development
Abdullah Khanfor, Ye Yang,

Gregg Vesonder
Stevens Inst. of Technology

Hoboken, NJ USA
e-mail: {akhanfor, ye.yang,

gvesonde}@stevens.edu

Guenther Ruhe
University of Calgary

Calgary, Canada
e-mail: ruhe@ucalgary.ca

Dave Messinger
TopCoder, Inc.

Glastonbury, CT USA
e-mail: messinger@topcoder.com

Abstract— Background: Despite the increasingly reported
benefits of software crowdsourcing, one of the major practical
concerns is the limited visibility and control over task progress.
Aim: This paper reports an empirical study to develop a
framework for failure prediction in software crowdsourcing.
Method: This process begins with identifying 13 influencing
factors in software crowdsourcing failures, across four
categories including task characteristics, technology
popularity, competition network, and workers reliability.
Presenting an algorithm to construct worker competition
network and extract its network metrics features. The
proposed framework was evaluated on 4,872 software
crowdsourcing tasks, extracted from TopCoder platform,
using five machine learners, compared with in-house
TopCoder predictor. Results: 1) Workers reliability, links in
the description, number of registered workers, number of
required technologies, and task-workers network modularity
are the most influencing factors for predicting crowdsourcing
failure; 2) The top-three learners for task failure are Naïve
Bayes, Random Forest, and StackingC, with precision above
98.8%, recall above 81.2%, and F-measure above 91.2%; and
3) The proposed best learners significantly outperform the two
baseline models in our evaluation. Conclusions: The
performance of the proposed framework is better than those of
the two baseline models. This paper offers practical
recommendations for managing task failure risks.

Keywords-software crowdsourcing, failure prediction,
developer reliability, technology popularity, machine learning.

I. INTRODUCTION
 Compared to in-house software development, the practice

of crowdsourced software development (CSD) claimed the
ability to deliver customer requested software assets with a
lower defect rate, at lower cost, in less time [1] [2].
However, major practical concerns are largely associated
with the limited control over task progress and deliverable
quality.

In the context of CSD, projects are typically organized
into dozens or hundreds of mini-tasks, each following the
process flow of task preparation by a requesting company,
task posting to a crowdsourcing platform, task registration
and submission by crowd workers, and peer review. The
whole process is depicted in Fig. 1. Scores from peer
reviews primarily characterize the task completion status.
For example, in the TopCoder platform [1] [2], a successful

task submission must be scored at least 75 out of 100. Any
submission with a review score less than 75 is considered as
failure, and marked with a status of “Cancellation-Failed
Review”. If a task receives no submissions, it is labeled as
“Cancellation – Zero Submissions”.

In this study, we call these two scenarios “Task
Cancellation” and “Task Starvation” respectively, and use
the term “Task Failure” to represent these two types of
unsuccessful CSD tasks. It’s of our interest to study the
factors associated with such failure and its predictability,
because for task requesters, employing external, unknown,
uncontrollable crowd workers places their projects under
greater uncertainty and risk compared with in-house
development. For example, one case study [3] presented the
preliminary results of a multi-year study on crowdsourcing
in the Brazilian IT industry, and reported interviews that
highlighted the concerns about the crowdsourced software
quality. Understanding the influencing factors of task failure
becomes extremely important for managers when predicting
and reacting to task failure. In a recent work, Dubey et al.
investigated five influence factors for CSD task completion
[12] and proposed task completion prediction methods.
However, none of the factors takes into consideration the
effects of task-worker competition network. Our study seeks
to address these issues and focus on improving the
predictability of task cancellation risks, by answering the
following research questions:

• RQ1: What are the influencing factors that are
associated with CSD task failure and their relative
importance to failure prediction?

• RQ2: Can we build predictive models for CSD task

Fig. 1. A Typical Software Crowdsourcing Process.

failure based on the identified factors?
• RQ3: To what extent does the proposed predictive

models improve the current baselines?
This paper reports our empirical studies towards

investigating and deriving solutions to the research
questions. We first present a motivating example, then
propose a CSD failure prediction framework consisting of a
list of attributes characterizing four categories including task
characteristics, technology popularity, worker
characteristics, and task-worker competition network. We
then develop algorithms to support automatically extract and
computation of such attributes, and build different failure
predictive models using six different machine learning
algorithms, evaluated on a dataset extracted from the
TopCoder platform. Finally, we compare the model
performance with two baselines. Evaluation results of the
machine learners show that our proposed prediction
methods outperform both baselines. The rest of the paper is
organized as follows: Section II introduces a motivating
example; Section III presents the failure prediction
framework; Section IV introduces the design of empirical
study; Section V reports the empirical results; Section VI
Discussion of the results; Section VII is the review of
related literature, and finally Section VIII is the conclusion.

II. A MOTIVATING EXAMPLE
 Table I shows an example of 9 selected tasks within one
project from the TopCoder website. The project contains a
total of 19 tasks dated between March 12, 2014 and June 30,
2014. As seen in Table I, Task 1 was subsequently cancelled
because there were zero submissions. The task was
simplified and completed as Task 2, with 1 submission.
However, Tasks 3 - 8 exemplify an important but rather
frustrating case, Basically the same task was posted six
times and the prize was increased twice (i.e. in Task 5 and
7) serving as an additional incentive, and the scope of the
requirements was reduced in Task 8, but all end up with task
cancelled nonetheless. For such a 5-day micro-task as
originally planned in Task 3, the resultant cumulative
schedule delay due to a series of cancellations is about 40
days (4/2/2014 - 5/12/2014). Considering the total duration
of this project, the schedule overrun caused by task
cancellation is as high as 40%.

Noted from the challenges names in Table I, six tasks (#3-

#8) are with the same challenge name and all cancelled due
to failure. Task #9, with a reduced scope, was successful.
This indicates the potential failure factors associated with
scope of task requirements. Task scope should be
appropriated reflected into main motivating factor such as
price, type and duration, since underpriced tasks tend to fail
due to less appealing to workers. It is also noted that the
links included in the task description contribute in additional
documents for the workers to understand the task details or
constraints. When comparing worker differences, in Task 5
through 7, the average worker reliability score is noted to be
relatively low, between 0.07 to 0.13. In contrast, Task 9
have an average workers’ reliability score of 0.16 and the
highest reliability score of one worker is 0.6. Reliability
score-related metrics is a good indicator for task outcome,
as reported in [12].

Our further analysis shows that among a total of 4,872
tasks, there were 754 cancelled tasks. This cancellation rate
corresponds to a failure rate of 15.4%, which is very high.
This is consistent and encouraging results compared with
the 60%-80% probability of success for competitions with at
least one registrant reported in [30]. However, the 15.4%
failure rate is non-trivial which necessitates analytically-
based prediction models to help assess and manage failure
risk as early as possible. In Dubey et al.’s study [12], there
is a lack of in-depth feature analysis to provide early-stage
prediction for task completion outcomes. Further, none of
the factors takes into consideration the effects of task-
worker competition network. Social network can be affected
by social behaviors. Wu et al. compared two CSD projects
competition networks and argued that denser task-worker
interaction contributes to CSD success [14]. Mao et al. also
proposed to recommend appropriate tasks to workers based
on worker’s social prestigious network [9]. Inspired by these
studies, we consider including task-worker competition
network metrics and explore its role in CSD task failure
prediction. We aim at identifying further less intuitive yet
more relevant factors that lead to potential failure.

III. PROPOSED FAILURE PREDICTION FRAMEWORK
 In this study, task prediction is modelled as a binary
classification problem, with successful tasks labelled as
“Completed, 1”, and failed tasks labelled as “Cancelled, 0”.
To address the task failure issue, we develop a failure
prediction framework, as shown in Fig. 2. We start by
establishing a set of metrics from the “TASK”, “TECH”,

TABLE I. EXAMPLES OF CANCELLED TASKS ON TOPCODER PLATFORM.

Task Status Challenge Name Start Date End Date Prize #Reg. #Sub.
1 Cancelled Urania Job Detail and Job Search Screens 3/29/2014 4/1/2014 1500 12 0
2 Completed Urania Job Detail and Job Search Screens - Reduced Scope 4/1/2014 4/3/2014 600 5 1
3 Cancelled Urania Job - Application Form 4/2/2014 4/6/2014 750 9 0
4 Cancelled Urania Job - Application Form 4/7/2014 4/14/2014 700 8 0
5 Cancelled Urania Job - Application Form 4/17/2014 4/22/2014 1100 8 0
6 Cancelled Urania Job - Application Form 4/23/2014 5/23/2014 1100 22 0
7 Cancelled Urania Job - Application Form 5/3/2014 5/9/2014 1500 0 0
8 Cancelled Urania Job - Application Form 5/9/2014 5/12/2014 750 5 0
9 Completed Urania Job - Application Form SCOPE REDUCED!! 5/12/2014 5/16/2014 1600 15 2

“NETWORK” and “WORKER” categories, with the
intention to explore the relative significance of these factors
in influencing task success or failure. Then employing
machine learning based prediction techniques, we
implement the framework for preprocessing data from the
historical dataset, training learners and using the trained
learners for predicting new tasks. Next, we will present the
main elements in the framework, and the Evaluation
component and three research questions (RQ1, RQ2, and
RQ3) will be introduced in Section IV.

A. Metric Definition
The four categories of attributes identified in this study

include:
1) Task characteristics (TASK), which contains data on

the award, type, duration, and link count as task size
indicator;

2) Technical complexity and popularity (TECH), which
contains data on both the number and popularity of
platforms/technologies required to be used in a task;

3) Worker characteristics (WORKER), which includes the
number of workers registered, and the average and
maximum reliability of the registered workers;

4) Competition Network (NETWORK), which represents
the results of graph properties calculated from Bipartite
graph with workers and tasks as nodes, worker
registration in task as directed edge, and modularity,
PageRank and strongly connected components as the
chosen network metrics.

Table II provides details of the metric descriptive
statistics. Some metrics such as Award, type, duration are
straightforward and used in existing studies. Next, we
introduce the derived metrics proposed by our study in more
detail.
1) Measuring Link Count as Task Size Indicator

Classical size measures such as lines of code are not
accessible in our study through the dataset. Alternatively,
we introduce an additional metrics to measure the size of
task based on the number of external website links provided
in the task description link count (measures the number of
external website links contained in the task description). In
TopCoder, a task description is basically natural language
text, with largely varied formats and lengths. External links
to dependent interfaces/modules or screen mockups are
frequently provided as detailed requirement descriptions. A
large chunk task could have a very long task description, or
just contain a link to an external file with very complicated
screen mockups. Therefore, we argue that link count could
be a better indicator for task size than lines of code count in
our study.
2) Deriving Technology Popularity

In crowdsourcing, technical complexity and popularity
have a direct impact on the scope and availability of worker
resources that a task is targeting. Typically, task description
involves multiple technologies and platform requirements.
We group similar technologies into categories and that
result in 30 different technology categories. For example,
JavaScript technologies are represented in multiple tags
involved in a task description. The technologies are
elaborated, in which "Node.js", "Angular.js", "JQuery", and
"JavaScript" are different technologies in the raw dataset.
We did group similar technologies as one technology and
grouped other technologies in similar way which results in
30 different technologies. In addition, to measure the
popularity of technologies, we give a weighted value for
each task depending on the frequency of occurrence of
technologies and platforms in the whole dataset. First, we
extract and compute the number of technologies involved in
a task from its “technologies” attributes. Then, the
popularity of each technology is computed using equation 1
below:

Fig. 2. Failure Prediction Framework.

TABLE II. METRICS DESCRIPTION AND DESCRIPTIVE STATISTICS.
Category Variables Description Min Max Mean Median STDEV

Task

Award Dollars in task description. 0 100000 896.02 500 1744.46
Type Type of tasks, i.e. First2Finish, Assembly, Bughunt etc. 1 14 - - -

Duration Total available time from registration date to submissions
deadline

0 73 16.86 9 12.6

LinkCount Number of links to detailed requirements or screen mockups in
task description

0 58 2.32 2 3.49

Tech NumTech Count of different technologies for task 1 11 2.73 2 1.20
MaxTechPop Most popular technology used within task 0 23.62 17.34 18.41 7.36
SumTechPop Total popularity weight of all technologies used for 0 76.98 26.74 23.62 16.50

Network PageRank The importance of task (node) using PageRank 4.72 10 5 0.11 11.9 10 5 6.05 10 5 157.20
StrongCompNum Connectivity of tasks to other nodes (tasks and worker) 0 12688 2518.97 2501.5 1519.61

Modularity Strength of network clusters or groups 0 13 4.51 4 3.92
Worker NumReg Number of registrants that are willing to compete on total

number of tasks in specific period
0 3296 12.32 10 48.35

AvgRely Average reliability of the involved workers 0 1 0.15 0.12 0.12
MaxRely Max reliability of the involved workers 0 1 0.56 0.6 0.28

 (1)
Where is the total number of different technologies (i.e.
 is 30), and is the total number of tasks (i.e. is 4,872).

If a task involves a technology , the corresponding will
be 1, otherwise it will be 0. For tasks involving multiple
platforms or technologies, we use the sum of the weighted
average of TechPopularity among all technologies to the
task as sum_Tech_Pop. Afterward, we get the maximum
TechPopularity form technologies and add it as additional
derived feature max_Tech_Pop. We make two basic
assumptions in measuring complexity and popularity. One is
that the greater the number of platforms/technologies a task
requires, the higher its complexity. This is consistent with
assumptions and evidence in Mao et al.’s pricing study [6],
in which the number of technologies is explicitly modelled
as one of the 16 pricing drivers. The other assumption is that
the more popular a platform/technology is, the greater pool
of potential workers. The evidence is shown in Fig. 3, where
the horizontal axis shows the Top-10 technologies in our
dataset crowdsourcing tasks, and the vertical axis shows the
corresponding frequencies of the number of tasks requiring
that technology (in Blue columns) and the number of
workers with skills in that technology (in Red columns).
There is a clear correlation between these two data series.

3) Measuring Task Competition Network
To build the graph, we consider unique workers as one

type of nodes and tasks as another type of nodes, then define
a directed edge from each worker if he/she registered in a
task. Because we have two set of nodes, we can be represent
as Bipartite graph. The graph contains all the tasks and their
registered workers between Jan 2014 and Jan 2015.

Fig. 4 demonstrates an example structure of Biparties
graph to measure the network properties of each task. In
Fig. 5, the pseudo-code shows the algorithm used for the
construction of the graph. Based on network analysis, we
will study the influence of network metrics including
Modularity Class, PageRank, and Strongly Connected
Component.

Modularity characterizes task connection density to help
understanding the structure of a large network [19].
PageRank quantifies the importance of nodes in the network

[20]. Strongly Connected Components in directed graph
adds a new information about different groups of nodes
strongly connected based on backtracking the graph [27].

4) Measuring Developer Reliability
For each task, we seek to predict the status from the

profiles of the registered pool of workers. Besides the size
of the registered pool of workers, i.e. the number of
registrants, we also consider the developer reliability factors
of the resource pool. Our assumption is that skilled and
reliable developers undertaking familiar tasks are more
likely to deliver qualified software assets. To measure how
reliable developers are, we adapted the definition of
developer reliability factor from TopCoder platform. More
specifically, “the reliability factor is calculated as the
percentage of the last 15 projects that a member registers for
in which that same member presents a timely submission
that passes review. Based on this definition, we derive two
metrics for each task: 1) AvgRely, which is the average
reliability of all registered workers; and 2) MaxRely, which
is the highest reliability among all registered workers.

IV. STUDY DESIGN
To evaluate the proposed failure prediction framework, we

design the following research questions (RQs), in
competitive software crowdsourcing tasks:
RQ1: What are the influencing factors that lead to a task
failure? By analyzing different attributes in the dataset,
identify the top factors influence the outcome, measure the
new defined metrics derived from the raw data. In addition,
our study will incorporate the network metrics which are
missing in Dubey et al.’s study.
RQ2: Can we build predictive methods for CSD task failure
based on the identified factors? We will apply different
machine learning techniques using the extracted metrics to

Fig. 3 Popular Technologies Used in TopCoder.

Fig. 5 Pseudo-code for establishing task competition network.

Fig. 4. Illustration of a Bipartite Worker-Task Competition Graph.

train predictive models and evaluate the prediction
performance.
RQ3: To what extent does the purposed predictive model
improves the current baselines? We will compare our
proposed predictive model with current in-house practice by
TopCoder.

A. Dataset
The dataset investigated in our study contains 4,872

competitive software development tasks from Jan 2014 to
Jan 2015, extracted from the TopCoder website. Each task is
associated with a set of metadata characterizing task
attributes such as ID, name, start date, end date, challenge
types, platform, technologies involved, etc. The outcome of
a task is measured by the number of workers signing up and
submitting for the task, evaluated scores of the
submission(s), and the end status of the tasks (i.e. completed
or cancelled). According to TopCoder's definition, a
completed task should have received an accepted
submission with a score of at least 75 out of 100. Otherwise,
it will be marked with the label of “cancelled” due to either
zero submissions or low quality submission score lower
than 75. For a completed task, either the Top-1 or Top-2
winners will receive the award according to a detailed
arrangement in the task description.

To derive answers to the RQs, we conducted the following
data analysis and evaluation experiments.

B. Evaluation Procedures
1) Data Preprocessing
We first filter historical tasks that have incomplete

information (e.g. tasks with missing data on important task
attributes such as award). Then, in order to better extract
knowledge of successful software development tasks, we
removed extreme values and outliers such as a task prized
$100,000 and attracted 3,296 developers. In fact, this task is
divided into 5 “swift debugger” sub-tasks which priced
$20,000 divided among multiple winners over a period at 30
days of continuous competition. These tasks, each involving
dynamically identifying and awarding multiple winners over
a certain period, were removed it to reduce the impact of
potential biased or irrelevant empirical knowledge.

2) Data Balancing.
Our dataset was imbalanced with 84.5% of the tasks

labelled as successful tasks. To overcome the data
imbalance issue, we applied the Synthetic Minority Over-
Sampling Technique (SMOTE) [10] to create extra data
points based on the minority, which in our case are the
failed tasks, by generating synthetic examples. The settings
for SMOTE algorithm for our predictive model was as
followings. The number of minority class samples is 754;
Amount of SMOTE 431%; Number of nearest neighbors
was k=5. Based on the dataset the values of SMOTE chosen
to make the number of task failure around 50% of the
trained dataset.

3) Data Transformation
We adopted some data preprocessing operations to

address the quality issues of the data.
Randomize. We applied a random shuffle to the order of

instances to eliminate any order issues from the generated
failed data points that would affect the machine learner
performance.

Normalization. We normalized each attribute to the 0-1
intervals to reduce the effect of different value scales.

4) Learner Selection
We ran the dataset with the identified attributes in Table

II and the target feature was the task outcome, in which the
value either success or failed, using a set of popular machine
learners used in defect prediction research, including
Random Forest [28], Naïve Bayes (NB) [29], Logistic
Regression, K-Nearest Neighbor (KNN, i.e. K=10 in our
study) [25], and StackingC (Ensemble Method) [21]. Based
on Hussain et al. conclusion [20], we used Stacking method
by setting the base-level classifier with (RF, NB, KNN) and
Logistic Regression model as meta classifier.

5) Model Evaluation
Lastly, we applied a 10-fold cross validation to split the

dataset into training sets and testing sets. We trained the five
learners on the training set, and then applied the trained
model to the test set. In this paper, we employ Precision,
Recall, and the F-measure that is the harmonic mean of
Precision and Recall, to assess the performance of the
baseline and the failure prediction models. We adopted
these three indicators based on the widely cited studies done
by Menzies et al. [29]. According to definitions of these
three indicators, we favor prediction results with high
Precision, high Recall, and high F-measure. Equations 2, 3
and 4 shows how we calculate these three measures.

 (2)

 (3)

 (4)

6) Comparison Baselines
To compare the prediction performance, we used two

comparison baselines:
a. TopCoder’s in-house predictor
TopCoder currently employs a heuristic-based predictor in

which three coded colors (RED, YELLOW, and GREEN) to
project task outcomes; it involves three simple rules with
respect to the sum of the reliability ratings of all registered
workers for a task. More specifically, a worker’s reliability
rating is a numeric rating between 0 and 1, accounting for
the percentage of a worker’s successful submissions over
his/her last 15 registered tasks. If the reliability ratings sum
is greater than or equal to 2, the predictor produces a
GREEN label, as an indicator of success for the task to the
requester; if it is less than 1, the predictor produces a RED
indictor, representing a most likely failed task. While
YELLOW is the result in-between of 1 and 2, which is an
uncertain situation for a task status. We implement the

TopCoder predictor and use it as one of the comparison
baselines. Then we compare its performance with our
approach using different learners.

b. Prediction Models in Dubey’s Study
 Dubey’s study provided a top five influence factors with
statistical exploration for the dataset from TopCoder
between 06/01/2012 to 12/31/2014. The study used Award,
Task Category, Duration, Number of Registrants, Number
of Technologies, and Maximum Reliability of workers,
which are also used in our model. In addition, they also
included the winners’ placements, the time for the first
submission, and the quality of the submissions. We don’t
employ these in our model because such information would
not be available until task completion. The only reported
best performance measure in Dubey’s Study is an 89% of F-
measure from a Random-Forest predictor. We consider it as
the second baseline for our study.

V. RESULTS

A. Answer to RQ1: Influencing Factors
To identify the most influential factors of task outcomes,

we apply four different feature ranking techniques including
correlation analysis (Corr.), Gain Ratio, Information Gain
(Info. Gain), and Symmetrical Uncertainty (Symm. Uncer.).
The result is summarized in Table III. According to the
feature selection results, which indicate that among the
investigated factors, the top influential factors are the
average of reliability scores for workers (AvgRely); the
highest reliable worker score (MaxRely); links in the
description (LinkCount); the number of registered workers
(NumReg); the number of technologies required
(NumTech); and the modularity of competition network
(Modularity), and so on. Next, we briefly summarize these
factors.

1) Worker Reliability (AvgRely and MaxRely)
Table III suggests that crowdsourcing success is largely

associated with worker reliability, with AvgRely and
MaxRely rank as the 1st and 2nd influencing factors. The
higher the average reliability of registered workers is, the

greater probability that the task is successfully completed.
While MaxRely refers to the highest reliability among all
registered workers, it is less significant than the average
reliability in differentiating cancelled tasks from successful
ones.

2) LinkCount
LinkCount is ranked as the third factor for the task

success. Typically, additional description or specification
details are provided as links embedded in task description,
to facilitate worker understanding.

3) Technologies (NumTech and MaxTechPop)
The results also show that two of the technological

factors, i.e. NumTech and MaxTechPop, are ranked as 5th
and 7th in the list. This confirms our assumption that the
more popular the technology is, the greater possibility to
succeed due to potentially larger worker supply pool.
However, the positive correlation between NumTech and
task success is counter-intuitive. A possible explanation
would be that the multiple technology complexity has been
taken into consideration into motivating factors such as
higher award in attracting more capable workers. On the
other hand, it is not necessary to derive that a low popular
technology will be subject to greater failure chance. In one
case, we found 78% of tasks (i.e. how many tasks in total
287) require APEX technology had succeed despite the low
supply of workers (68 workers) that registered in similar
tasks that require APEX technology.

4) Network
Modularity is ranked as the 6th factor, while the other two

network factors, i.e. PageRank and StronglyConnected-
Components, are ranked the last two in the list.

5) Task (Award, Duration, Type)
Award is ranked 8th in our study, while it is ranked as the

4th factor in Dubey’s study. Duration is ranked 9th in our
study, while it is ranked as the 5th in Dubey’s study. Lastly,
Dubey’s model ranks the challengeType as the 2nd factor;
while it is only ranked 10th in our study. The results
indicates that some additional factors proposed in our study
show a greater influence in task success.

B. Answer to RQ2:

TABLE III. DIFFERENT ATTRIBUTE SELECTION AND ATTRIBUTE RANK.
Metric Corr. Rank Gain. Ratio Rank Info. Gain Rank Symm. Uncer. Rank Overall Rank

AvgRely 0.31316 1 0.10542 4 0.55885 1 0.17738 3 1
MaxRely 0.25547 2 0.10403 5 0.52526 2 0.17367 4 2

LinkCount 0.04174 7 0.11529 2 0.38853 4 0.17781 2 3
NumReg 0.08237 5 0.10061 6 0.52156 3 0.16869 6 4
NumTech 0.04351 12 0.1255 1 0.31337 9 0.17922 1 5
Modularity 0.01791 5 0.0989 7 0.33595 8 0.15281 7 6

MaxTechPop 0.01601 13 0.11522 3 0.34809 6 0.17313 5 6
Award 0.17514 3 0.06206 9 0.2468 10 0.09918 10 8

Duration 0.04026 8 0.01 8 0.36274 5 0.15017 8 9
Type 0.11674 4 0.01705 11 0.03093 11 0.02198 11 10

SumTechPop 0.01304 12 0.06766 9 0.33685 7 0.11269 9 10
PageRank 0.01811 9 0.01069 12 0.0231 12 0.01462 12 12

StrongCompNum 0.00926 13 0.0084 13 0.0086 13 0.0085 13 13

 The results of our empirical study are presented in Table
V. In general, an encouraging performance results in the
task failure predictive models. With each machine learner
we include the precision, recall and f-measure for each label
(i.e. failure vs. completion). The top-3 failure learners for
each measure are marked in bold in Table V.

According to precision, which represents the proportion
of the predict outcome over the actual outcome, all learners
can predict “failure” class with a precision greater than
95.6%, with the highest precision of 99.9% from Naïve
Bayes. This means that more than 95.6% of all predicted
failures are actually failures. According to recall, the
accuracy is also very good (i.e. ranging from 79.1% from
KNN with k=10, to 83.1% from Logistic). Though this is
also considered high performance, it indicates that there are
about 20% of actual failures are missed by the prediction
models. According to F-measure, the harmonic mean of
precision and recall, we observe that different learner
performs between 88.1% from KNN(k=10) and 89.6% from
NB, RF, and StackingC. It’s worth noting that StackingC, as
an ensemble approach, does not outperform individual
classifiers. This is different from the conclusion reported in
[20]. Nonetheless, Naïve Bayes, StackingC, and Random
Forest are among the Top-3 learners in our case,
outperforming the other learners.

Even though, our scope is to purpose a failure prediction
model. We have to introduce the completion-prone in our
study, Table V, to accurately compare our learner’s
performance with to TopCoder Predictor the first baseline,
and Dubey’s best model, Random Forest, the second
baseline. This will be detailed in the next section.

C. Answer to RQ3:
 Note that the performance for predicting “completion”

class is also reported in Table V in order to compare with
the selected baselines. The reason is that only performance
for completion class prediction is reported in Dubey et al.’s
study [12]. The top-3 completion learners for each measure
are marked in italic bold, red colored, and gray shaded.

As shown in the bottom part of Table V, all learners show
improved performance, in terms of F-measure, over the
TopCoder Predictor. For the first baseline of TopCoder
predictor, the improvement is 19.1% (85.1% vs. 66%) in
precision, 38% (100% vs. 62%) in recall, and 27.4% (91.3%
vs. 63.9%) in F-Measure. For the second baseline, the best
learner from Dubey et al.’s study, an improvement of 2.3%
in F-measure is concluded. Since no other measures is
reported in Dubey’s study, we cannot compare precision and
recall measures.

VI. DISCUSSION

A. Predictability of Software Crowdsourcing Tasks
This study provides empirical evidence on software

crowdsourcing development task failure predication. Using
the proposed failure prediction framework, esp. extracting
features characterizing various factors from TASK, TECH,
WORKER and NETWORK categories, the achieved
accuracy was improved noticeably comparing to the
TopCoder prediction baseline and slight improvement to
Dubey’s results. The additional factors identified in our
study, such as task competition network and technology
popularity metrics help to contribute to such improvement.

As further investigation, we also analyzed the
predictability of task completion scores using the dataset
and the five learners. The results in Table VI shows that the
best predictor Naïve Bayes can predict the final score with a
Mean Absolute Error (MAE) of 0.095, which is considered
very accurate and encouraging. Based on learned proposed
in this study, task requesters can have access to more
insights on the likelihood of potential task outcomes based
on ongoing dynamics of worker participations. As automatic
monitoring and control support aid, if any failure proneness
detected, task requesters can be warned and mitigation
actions can be discussed and taken place accordingly.

Considering the largely reported promising benefits of
CSD such as 30% - 80% cost reduction compared to in-

TABLE V. SUMMARY OF PREDICTIVE PERFORMANCE

Method Label Precision Recall F-Measure
Naïve Bayes Failure 0.999 0.812 0.896

Completion 0.841 0.999 0.913
Average 0.920 0.905 0.905

Random Forest Failure 0.988 0.819 0.896
Completion 0.845 0.990 0.912

Average 0.917 0.905 0.904
SVM Failure 1.000 0.801 0.889

Completion 0.833 1.000 0.909
Average 0.917 0.900 0.899

Logistic Failure 0.965 0.831 0.893
Completion 0.851 0.970 0.907

Average 0.908 0.900 0.900
KNN (K=10) Failure 0.993 0.791 0.881

Completion 0.826 0.995 0.903
Average 0.910 0.893 0.892

KNN (K=5) Failure 0.981 0.812 0.889
Completion 0.840 0.984 0.906

Average 0.910 0.898 0.898
KNN (K=3) Failure 0.956 0.828 0.887

Completion 0.848 0.962 0.901
Average 0.902 0.895 0.894

StackingC Failure 0.997 0.814 0.896
Completion 0.842 0.998 0.913

Average 0.920 0.906 0.905
Baselines

TopCoder Predicator

Completion 0.660 0.620 0.639
Dubey’s model (RF) Completion - - 0.89

TABLE VI. COMPARISON OF MAE IN FINAL SCORE PREDICTION.

Method MAE
Naïve Bayes 0.095

SVM 0.100
StackingC 0.157

KNN (K=3) 0.155
Random Forest 0.165

KNN (K=5) 0.165
Logistic Regression 0.165

KNN (K=10) 0.184
TopCoder Predictive 0.379

house development or outsourcing, or the purposed 5 to 8
times lower defect rate as compared with traditional
software development practices [1], our results provide a
complementary perspective and method to support better
planning and managing crowdsourced software
development.

B. Practical Insights
Our results indicate that crowdsourcing failure can be

predictable. This is encouraging evidence in that there is a
value in developing supporting tools for monitoring and
controlling the risks of crowdsourced software development
projects. Such supporting tool address the failure risk at the
task design phase or during the task registration phase. It is
very encouraging that by employing a simpler model, such
as the Naïve Bayes learner, we can project failure-prone
tasks to 89% f-measure with low MAE of 9.5%.

More practical guidance can be concluded based on the
most influential factors of task failure, which includes
workers reliability, task size, award, and network degree,
are the most influencing factors for crowdsourcing.

1) Recommendation for Task Design
In crowdsourced software development, importance steps

in the task design phase consist of task decomposition and
micro-task preparation. The empirical results lead us to
derive a few insights to guide decisions in the task design
phase, which we list as follows:

• It is observed that workers with higher reliability
scores lead to task success. For that, attracting a
reliable worker to the task is an influential factor for
successful outcome.

• Task award is a not a major factor to attract workers,
as it is only ranked as #8 factors, as shown in Table
II.

• Decomposing a task into a shorter set of tasks to
reduce the risk of cancellation. The average duration
of successful tasks is 14 days, while that of cancelled
tasks is 18 days. More than half of the successful
tasks are scheduled for 1 day.

• Incorporate analytical-based learners can help task
requestors monitor and predict failure risk and
improving task design.

2) Recommendation for Managing a Well-structured
Worker Community

Understanding the developer’s interaction, especially, on
how they register in different tasks and their effects on each
other that in which is captured by network analysis. For that,
ensure a highly reliable worker who participates in task
gives a greater chance of success for a crowdsourced
software task. Thus, identifying and mobilizing the best and
most reliable worker resource is essential. We offer insights
from both a pre-registration resource identification
perspective and a post-registration risk monitoring
perspective.

• Pre-registration: In a recent study, Mao et. al.
proposed a recommendation system [18] that can

learn from task similarity and competition history
and recommended diversity of competition and both
reliable workers and participatory workers to
guarantee the quality of delivered assets. The results
from our study confirms that it is more important to
cultivate a diversified yet reliable crowd (i.e. with
high AvgRely), rather than the best individual (i.e.
MaxRely) in order to ensure greater confidence in
crowdsourcing success.

• Post-registration: The developer rating and
reliability metric system on TopCoder contains
much invaluable data to help understand workers
participation and abandonment in his/her
competition history. Though our proposed task
failure prediction method is built based on historical
project data, it can be extended and applied in real
time cases in order to provide early risk indicators
for task requesters.

C. Limitations
There are several limitations to this study. First, the study

only focuses on competitive software crowdsourcing tasks
on TopCoder platform. There are many non-competitive or
collaborative crowdsourcing tasks, which may demonstrate
different task organization, pricing patterns, and worker
behaviors, etc. Second, there are some competition factors
such as number of available tasks to select, number of tasks
a worker has, etc. that might also impact on task failure
likelihood. These are not included in current study yet and
will be one of our future research topics. Third, proposed
metrics such as studying of supply and demand for
technologies and worker, social network analysis and others
need a dedicated study to get more understanding of the
factors for task failure. Fourth, regarding internal threats,
different settings (e.g., learner, sample size) may lead to
different model outputs.

D. Threat to Validity
Two types of threats of validity will be discussed. We

used Python Sklearn to perform our empirical study. The
results of Random Forest machine learner impacted by
imbalanced data in which our study includes 15.4% failure
rate. For that, we used SMOTE, an oversampling approach,
to balance the dataset. SMOTE generates the new data
points based on the historical data points, which in real-
world may differ than the ones created using SMOTE.

Even though Naïve Bayes performs the best in our study,
the algorithm assumes that all the features independent to
predict task outcome [23]. In fact, some features in the study
have dependencies such as the average of reliability and the
maximum of reliability.

Many other possible additional factors could affect the
task completion status, such as how familiar or experienced
individual workers are to the task? To what degree
individual sign-up worker can handle multi-tasking? How
many other similar tasks are simultaneously competing
resources with the task? How about other semantic factors

from task description? The effects of such factors are not
considered in current framework.

Threats to external validity by considering the
generalization of the study to other types of crowdsourcing
tasks, or other platforms than TopCoder. Our research is
focused on software development crowdsourcing tasks and
in particular TopCoder. Other platforms offer a different
flow of requesting the task and evaluating the workers.
Thus, the application of the proposed framework might need
to be carefully examined to accommodate such differences.

VII. RELATED WORK

A. CSD Success Factors
Messinger highlighted three elements of successful

software crowdsourcing quality community, right
incentives, and trust and transparency [17]. Software
crowdsourcing platforms attracts developers with certain
skillsets to participate in the open-call tasks, and the quality
of workers’ leads to success in the crowdsourced tasks [7,
8]. CSD platforms, such as TopCoder, typically measure the
quality of each worker by assigning a community rating
score based on his past behaviors, from both quality and
quantity aspects. Additionally, a Reliability score is
employed by TopCoder to indicate the reliability and
consistency of a worker’s performance in his/her most
recent 15 tasks. These types of scoring schemes provide a
good evaluation for the quality workers in the platforms.

Identifying the motivation for workers to participate and
submit for tasks is one of the key concept to attract them in
proposed task. The incentives for the workers are not
limited to monetary reward. Borst [19] stated that the
extrinsic motivations for workers effected the participation,
behavior and performance positively by the existence of the
reward. An evidence, in some crowdsourced tasks in
TopCoder with zero monetary reward shows a success
outcome. For that, highly self-motivated workers submit for
such tasks based on Borst study [19]. For increasing amount
of award, Yang [5] shows that number of registered workers
in similar tasks shapes an inverted U-curve. For that, a
careful chose of right incentives is not exclusive to the task
reward or requirement; it’s also depends on the workers’
motivations to participate on certain task.

The uncertainty of task outcome raises the trust issues
between workers and task owner. From the task requester’s
perspectives, it is challenging to identify best workers for
their tasks, and even more challenging to monitor risks
related to workers reliability shortfalls. CSD platforms
employ peer-review processes to evaluate workers’
submissions, there might be possibilities that the review
processes can be strategically manipulated by workers or
task owners [24]. In addition, workers provided information
about their teammates or opponents outperformed the
anonymous condition in task delivery [4].

B. CSD Decision Support
To address the potential task completion risk, Dubey et

al. identify the top five influence factors. By using a
different machine learning algorithms with exploratory
analysis. The study highlighted these factors considering
information gain weight for ranking the factors. The results
show the most influence factors for task completion are
rating of register workers, type of the task, winner’s prize
and duration of the task respectively. Despite that, the
importance on analyzing task features such as, worker
reliability, incentives, technologies, complexity and duration
helps the requester to propose a well-structured task. On one
hand, task features such as task complexity and task
incentives consider to be motivations for workers to
participate in task. On the other hand, attracting strong
developers with high rating and reliability score effects on
the success of a task. Thus, capturing all these features can
be achieved by representing the workers and tasks in graph
and extract the properties to predict the task status
accurately, in which not been discussed in the study.
Actually, the best performance algorithm from Dubey’s
study will be consider as baseline for our proposed model.

Another type of CSD decision support is providing a
relevant pool of workers for purposed new tasks [18] [9] or
recommending appropriate tasks for workers [7] [16].
Existing studies deriving workers quality based on their
reputation and expertise based on their earlier tasks
participation [7] [13] [15] [18]. As an efficient way to
identify qualified workers, Mao et al. proposed a content-
based recommendation system to automatically match tasks
and developers based on historical data [18]. The system
learns from the winning history for recommending reliable
developers and learns from registration history to suggest
suitable participants for available tasks. Yang et al.
proposed a dynamic decision support to help worker
choosing the suitable tasks [7]. For matching the best
workers for available tasks, Mao et al. introduce a decision
support of Prestige Network Enhanced Developer-Task
Matching for Crowdsourced Software Development [9].

C. Social Network Analysis in CSD
Social network analysis techniques quantify the social

behaviors represented in a set of nodes and edges [19] [11].
Existing studies have applied social network analysis in
CSD in the competition network between developers [14].
PREM examines the developers’ historical task data and
rating to construct a competition network between winners
and registered workers aiming to match suitable workers
with tasks [9]. In like manner, Zhang et al. build a
competition network and concluded a positive correlation
between the social network properties of developers and the
outcome of the projects [14].

In our study, we will construct the crowdsourcing
participatory network to capture the tasks and developers in

which we include the social network metrics for each task as
additional features to build failure prediction models, to
improve the performance of task failure prediction.

VIII. CONCLUSIONS
In the context of crowdsourced software development

(CSD), projects are typically organized into dozens or
hundreds of micro-tasks, it is not feasible to manually
monitor the ongoing progress status of large number of
crowdsourced tasks. Despite the increasingly reported
benefits associated with CSD, one of the major practical
concerns is the limited visibility and control over task
progress. This study seeks to precisely detect cancellation-
prone tasks and thus helps to take management actions to
prevent potential delay. We developed empirically based
metrics and employed machine learning techniques to
automatically predict task failure risk based on historical
data. The Study's main results include: 1) Workers
reliability, links in the description, number of registered
workers, number of required technologies, and task-workers
network modularity are the most influencing factors for
predicting crowdsourcing failure; 2) The top-three learners
for task failure are Naïve Bayes, Random Forest, and
StackingC, with precision above 98.8%, recall above 81.2%,
and F-measure above 91.2%; and 3) The proposed best
learners significantly outperform the two baseline models in
our evaluation. Future research direction includes broader
data collection and evaluation, as well as utilizing text
mining approaches to understanding the effect of task
description on task failure prediction.

REFERENCES
[1] Lakhani, Karim R. "Managing communities and contests to innovate

with crowds." Revolutionizing Innovation: Users, Communities, and
Open Innovation (2016): 109.

[2] TopCoder – A Platform Overview. Retrieved from NASA.gov
http://www.nasa.gov/pdf/651447main_TopCoder_Mike_D1_830am.p
df

[3] Prikladnicki, Rafael, Leticia Machado, Erran Carmel, and Cleidson
RB de Souza. "Brazil software crowdsourcing: a first step in a multi-
year study." In Proc. of the 1st Int. Workshop on CrowdSourcing in
Softw. Eng., pp. 1-4. ACM, 2014.

[4] Bernstein, Michael S et al. "Soylent: a word processor with a crowd
inside." Commun. of the ACM 58, no. 8 (2015): 85-94.

[5] Yang, Ye, and Razieh Saremi. "Award vs. Worker Behaviors in
Competitive Crowdsourcing Tasks." In Empirical Softw. Eng. and
Measurement (ESEM), 2015 ACM/IEEE Int. Symp. on, pp. 1-10.
IEEE, 2015.

[6] Mao, Ke, Ye Yang, Mingshu Li, and Mark Harman. "Pricing
crowdsourcing-based software development tasks." In Proceedings of
the 2013 international conference on Software engineering, pp. 1205-
1208. IEEE Press, 2013.

[7] Yang, Ye, Muhammad Rezaul Karim, Razieh Saremi, and Guenther
Ruhe. "Who Should Take This Task?: Dynamic Decision Support for
Crowd Workers." In Proc. of the 10th ACM/IEEE Int. Symp. on
Empirical Softw. Eng. and Measurement, p. 8. ACM, 2016.

[8] Kittur, Aniket, Ed H. Chi, and Bongwon Suh. "Crowdsourcing user
studies with Mechanical Turk." In Proc. of the SIGCHI conf. on
human factors in computing syst., pp. 453-456. ACM, 2008.

[9] Mao, Ke, et al. "PREM: Prestige Network Enhanced Developer-Task
Matching for Crowdsourced Software Development." (2016).

[10] Chawla, Nitesh V., Kevin W. Bowyer, Lawrence O. Hall, and W.
Philip Kegelmeyer. "SMOTE: synthetic minority over-sampling
technique." J. of artificial intel. research 16 (2002): 321-357.

[11] Leenders, Roger TAJ, and Wilfred A. Dolfsma. "Social networks for
innovation and new product development." J. of Product Innovation
Manage. 33, no. 2 (2016): 123-131.

[12] Dubey, Alpana, et al. "Dynamics of software development
crowdsourcing." In Global Softw. Eng. (ICGSE), 2016 IEEE 11th Int.
Conf. on, pp. 49-58. IEEE, 2016.

[13] Tan, Wei, M. Brian Blake, Iman Saleh, and Schahram Dustdar.
"Social-network-sourced big data analytics." IEEE Internet
Computing 17, no. 5 (2013): 62-69.

[14] Zhang, Hui, Yuchuan Wu, and Wenjun Wu. "Analyzing developer
behavior and community structure in software crowdsourcing."
In Information science and applications, pp. 981-988. Springer,
Berlin, Heidelberg, 2015.

[15] Karim, Muhammad Rezaul, David Messinger, Ye Yang, and
Guenther Ruhe. "Decision Support for Increasing the Efficiency of
Crowdsourced Software Development." arXiv preprint
arXiv:1610.04142 (2016).

[16] Tomek, Ivan. "An experiment with the edited nearest-neighbor
rule." IEEE Transactions on systems, Man, and Cybernetics 6 (1976):
448-452.

[17] Messinger, D. (2016). Elements of Good Crowdsourcing. Keynote
presented at 3rd International Workshop in Austin, Texas.

[18] Mao, Ke, Ye Yang, Qing Wang, Yue Jia, and Mark Harman.
"Developer recommendation for crowdsourced software development
tasks." In Service-Oriented System Engineering (SOSE), 2015 IEEE
Symposium on, pp. 347-356. IEEE, 2015.

[19] Borst, Irma. Understanding Crowdsourcing: Effects of motivation
and rewards on participation and performance in voluntary online
activities. No. EPS-2010-221-LIS. 2010.

[20] Hussain, Shahid, et al. "Performance evaluation of ensemble methods
for software fault prediction: An experiment." In Proceedings of the
ASWEC 2015 24th Australasian Software Engineering Conference,
pp. 91-95. ACM, 2015.

[21] Seewald, Alexander K. "How to make stacking better and faster while
also taking care of an unknown weakness." In Proceedings of the
nineteenth international conference on machine learning, pp. 554-
561. Morgan Kaufmann Publishers Inc., 2002.

[22] Archak, Nikolay. "Money, glory and cheap talk: analyzing strategic
behavior of contestants in simultaneous crowdsourcing contests on
TopCoder. com." In Proceedings of the 19th international conference
on World wide web, pp. 21-30. ACM, 2010.

[23] Khoshgoftaar, Taghi M., Moiz Golawala, and Jason Van Hulse. "An
empirical study of learning from imbalanced data using random
forest." In Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th
IEEE International Conference on, vol. 2, pp. 310-317. IEEE, 2007.

[24] Kamar, Ece, and Eric Horvitz. "Incentives for truthful reporting in
crowdsourcing." In Proc. of the 11th int. conference on autonomous
agents and multiagent syst.-volume 3, pp. 1329-1330. Int. Foundation
for Autonomous Agents and Multiagent Systems, 2012.

[25] Blondel, Vincent D., et al. "Fast unfolding of communities in large
networks." J. of statistical mechanics: theory and experiment2008,
no. 10 (2008): P10008.

[26] Page, Lawrence, et al. The PageRank citation ranking: Bringing
order to the web. Stanford InfoLab, 1999.

[27] Tarjan, Robert. "Depth-first search and linear graph
algorithms." SIAM journal on computing 1, no. 2 (1972): 146-160.

[28] Lessmann, Stefan, Bart et al. "Benchmarking classification models
for software defect prediction: A proposed framework and novel
findings." IEEE Trans. on Softw. Engi. 34, no. 4 (2008): 485-496.

[29] Menzies, Tim, Jeremy Greenwald, and Art Frank. "Data mining static
code attributes to learn defect predictors." IEEE transactions on
software engineering 33, no. 1 (2007): 2-13.

[30] Begel, Andrew, Jan Bosch, and Margaret-Anne Storey. "Social
networking meets software development: Perspectives from github,
msdn, stack exchange, and topcoder." IEEE Software 30, no. 1
(2013): 52-66.

	I. Introduction
	II. A Motivating Example
	III. Proposed Failure Prediction Framework
	A. Metric Definition
	1) Measuring Link Count as Task Size Indicator
	2) Deriving Technology Popularity
	3) Measuring Task Competition Network
	4) Measuring Developer Reliability

	IV. Study Design
	RQ1: What are the influencing factors that lead to a task failure? By analyzing different attributes in the dataset, identify the top factors influence the outcome, measure the new defined metrics derived from the raw data. In addition, our study will...
	RQ2: Can we build predictive methods for CSD task failure based on the identified factors? We will apply different machine learning techniques using the extracted metrics to train predictive models and evaluate the prediction performance.
	RQ3: To what extent does the purposed predictive model improves the current baselines? We will compare our proposed predictive model with current in-house practice by TopCoder.
	A. Dataset
	B. Evaluation Procedures
	1) Data Preprocessing
	2) Data Balancing.
	3) Data Transformation
	4) Learner Selection
	5) Model Evaluation
	6) Comparison Baselines

	V. Results
	A. Answer to RQ1: Influencing Factors
	1) Worker Reliability (AvgRely and MaxRely)
	2) LinkCount
	3) Technologies (NumTech and MaxTechPop)
	4) Network
	5) Task (Award, Duration, Type)

	B. Answer to RQ2:
	C. Answer to RQ3:

	VI. Discussion
	A. Predictability of Software Crowdsourcing Tasks
	B. Practical Insights
	1) Recommendation for Task Design
	2) Recommendation for Managing a Well-structured Worker Community

	C. Limitations
	D. Threat to Validity

	VII. Related Work
	A. CSD Success Factors
	B. CSD Decision Support
	C. Social Network Analysis in CSD

	VIII. Conclusions
	References

