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Abstract— Background: Despite the increasingly reported 
benefits of software crowdsourcing, one of the major practical 
concerns is the limited visibility and control over task progress.  
Aim: This paper reports an empirical study to develop a 
framework for failure prediction in software crowdsourcing.  
Method: This process begins with identifying 13 influencing 
factors in software crowdsourcing failures, across four 
categories including task characteristics, technology 
popularity, competition network, and workers reliability. 
Presenting an algorithm to construct worker competition 
network and extract its network metrics features. The 
proposed framework was evaluated on 4,872 software 
crowdsourcing tasks, extracted from TopCoder platform, 
using five machine learners, compared with in-house 
TopCoder predictor. Results: 1) Workers reliability, links in 
the description, number of registered workers, number of 
required technologies, and task-workers network modularity 
are the most influencing factors for predicting crowdsourcing 
failure; 2) The top-three learners for task failure are Naïve 
Bayes, Random Forest, and StackingC, with precision above 
98.8%, recall above 81.2%, and F-measure above 91.2%; and 
3) The proposed best learners significantly outperform the two 
baseline models in our evaluation. Conclusions: The 
performance of the proposed framework is better than those of 
the two baseline models. This paper offers practical 
recommendations for managing task failure risks. 

Keywords-software crowdsourcing, failure prediction, 
developer reliability, technology popularity, machine learning. 

I. INTRODUCTION  
 Compared to in-house software development, the practice 

of crowdsourced software development (CSD) claimed the 
ability to deliver customer requested software assets with a 
lower defect rate, at lower cost, in less time [1] [2]. 
However, major practical concerns are largely associated 
with the limited control over task progress and deliverable 
quality.  

In the context of CSD, projects are typically organized 
into dozens or hundreds of mini-tasks, each following the 
process flow of task preparation by a requesting company, 
task posting to a crowdsourcing platform, task registration 
and submission by crowd workers, and peer review.  The 
whole process is depicted in Fig. 1. Scores from peer 
reviews primarily characterize the task completion status. 
For example, in the TopCoder platform [1] [2], a successful 

task submission must be scored at least 75 out of 100. Any 
submission with a review score less than 75 is considered as 
failure, and marked with a status of “Cancellation-Failed 
Review”. If a task receives no submissions, it is labeled as 
“Cancellation – Zero Submissions”.  

In this study, we call these two scenarios “Task 
Cancellation” and “Task Starvation” respectively, and use 
the term “Task Failure” to represent these two types of 
unsuccessful CSD tasks. It’s of our interest to study the 
factors associated with such failure and its predictability, 
because for task requesters, employing external, unknown, 
uncontrollable crowd workers places their projects under 
greater uncertainty and risk compared with in-house 
development. For example, one case study [3] presented the 
preliminary results of a multi-year study on crowdsourcing 
in the Brazilian IT industry, and reported interviews that 
highlighted the concerns about the crowdsourced software 
quality. Understanding the influencing factors of task failure 
becomes extremely important for managers when predicting 
and reacting to task failure. In a recent work, Dubey et al. 
investigated five influence factors for CSD task completion 
[12] and proposed task completion prediction methods. 
However, none of the factors takes into consideration the 
effects of task-worker competition network. Our study seeks 
to address these issues and focus on improving the 
predictability of task cancellation risks, by answering the 
following research questions: 

• RQ1: What are the influencing factors that are 
associated with CSD task failure and their relative 
importance to failure prediction? 

• RQ2: Can we build predictive models for CSD task 

 
Fig. 1.  A Typical Software Crowdsourcing Process. 

 



failure based on the identified factors? 
• RQ3: To what extent does the proposed predictive 

models improve the current baselines? 
This paper reports our empirical studies towards 

investigating and deriving solutions to the research 
questions. We first present a motivating example, then 
propose a CSD failure prediction framework consisting of a 
list of attributes characterizing four categories including task 
characteristics, technology popularity, worker 
characteristics, and task-worker competition network. We 
then develop algorithms to support automatically extract and 
computation of such attributes, and build different failure 
predictive models using six different machine learning 
algorithms, evaluated on a dataset extracted from the 
TopCoder platform. Finally, we compare the model 
performance with two baselines. Evaluation results of the 
machine learners show that our proposed prediction 
methods outperform both baselines. The rest of the paper is 
organized as follows: Section II introduces a motivating 
example; Section III presents the failure prediction 
framework; Section IV introduces the design of empirical 
study; Section V reports the empirical results; Section VI 
Discussion of the results; Section VII is the review of 
related literature, and finally Section VIII is the conclusion. 

II. A MOTIVATING EXAMPLE 
 Table I shows an example of 9 selected tasks within one 
project from the TopCoder website. The project contains a 
total of 19 tasks dated between March 12, 2014 and June 30, 
2014. As seen in Table I, Task 1 was subsequently cancelled 
because there were zero submissions. The task was 
simplified and completed as Task 2, with 1 submission. 
However, Tasks 3 - 8 exemplify an important but rather 
frustrating case, Basically the same task was posted six 
times and the prize was increased twice (i.e. in Task 5 and 
7) serving as an additional incentive, and the scope of the 
requirements was reduced in Task 8, but all end up with task 
cancelled nonetheless. For such a 5-day micro-task as 
originally planned in Task 3, the resultant cumulative 
schedule delay due to a series of cancellations is about 40 
days (4/2/2014 - 5/12/2014). Considering the total duration 
of this project, the schedule overrun caused by task 
cancellation is as high as 40%. 

Noted from the challenges names in Table I, six tasks (#3-

#8) are with the same challenge name and all cancelled due 
to failure. Task #9, with a reduced scope, was successful. 
This indicates the potential failure factors associated with 
scope of task requirements. Task scope should be 
appropriated reflected into main motivating factor such as 
price, type and duration, since underpriced tasks tend to fail 
due to less appealing to workers. It is also noted that the 
links included in the task description contribute in additional 
documents for the workers to understand the task details or 
constraints. When comparing worker differences, in Task 5 
through 7, the average worker reliability score is noted to be 
relatively low, between 0.07 to 0.13. In contrast, Task 9 
have an average workers’ reliability score of 0.16 and the 
highest reliability score of one worker is 0.6. Reliability 
score-related metrics is a good indicator for task outcome, 
as reported in [12].  

Our further analysis shows that among a total of 4,872 
tasks, there were 754 cancelled tasks. This cancellation rate 
corresponds to a failure rate of 15.4%, which is very high. 
This is consistent and encouraging results compared with 
the 60%-80% probability of success for competitions with at 
least one registrant reported in [30]. However, the 15.4% 
failure rate is non-trivial which necessitates analytically-
based prediction models to help assess and manage failure 
risk as early as possible. In Dubey et al.’s study [12], there 
is a lack of in-depth feature analysis to provide early-stage 
prediction for task completion outcomes. Further, none of 
the factors takes into consideration the effects of task-
worker competition network. Social network can be affected 
by social behaviors. Wu et al. compared two CSD projects 
competition networks and argued that denser task-worker 
interaction contributes to CSD success [14]. Mao et al. also 
proposed to recommend appropriate tasks to workers based 
on worker’s social prestigious network [9]. Inspired by these 
studies, we consider including task-worker competition 
network metrics and explore its role in CSD task failure 
prediction. We aim at identifying further less intuitive yet 
more relevant factors that lead to potential failure. 

III. PROPOSED FAILURE PREDICTION FRAMEWORK 
 In this study, task prediction is modelled as a binary 
classification problem, with successful tasks labelled as 
“Completed, 1”, and failed tasks labelled as “Cancelled, 0”. 
To address the task failure issue, we develop a failure 
prediction framework, as shown in Fig. 2. We start by 
establishing a set of metrics from the “TASK”, “TECH”, 

 

TABLE I. EXAMPLES OF CANCELLED TASKS ON TOPCODER PLATFORM. 
 

Task Status Challenge Name Start Date End Date Prize #Reg. #Sub. 
1 Cancelled Urania Job Detail and Job Search Screens 3/29/2014 4/1/2014 1500 12 0 
2 Completed Urania Job Detail and Job Search Screens - Reduced Scope 4/1/2014 4/3/2014 600 5 1 
3 Cancelled Urania Job - Application Form 4/2/2014 4/6/2014 750 9 0 
4 Cancelled Urania Job - Application Form 4/7/2014 4/14/2014 700 8 0 
5 Cancelled Urania Job - Application Form 4/17/2014 4/22/2014 1100 8 0 
6 Cancelled Urania Job - Application Form 4/23/2014 5/23/2014 1100 22 0 
7 Cancelled Urania Job - Application Form 5/3/2014 5/9/2014 1500 0 0 
8 Cancelled Urania Job - Application Form 5/9/2014 5/12/2014 750 5 0 
9 Completed Urania Job - Application Form SCOPE REDUCED!! 5/12/2014 5/16/2014 1600 15 2 

 
 



“NETWORK” and “WORKER” categories, with the 
intention to explore the relative significance of these factors 
in influencing task success or failure. Then employing 
machine learning based prediction techniques, we 
implement the framework for preprocessing data from the 
historical dataset, training learners and using the trained 
learners for predicting new tasks. Next, we will present the 
main elements in the framework, and the Evaluation 
component and three research questions (RQ1, RQ2, and 
RQ3) will be introduced in Section IV. 

A. Metric Definition 
The four categories of attributes identified in this study 

include: 
1) Task characteristics (TASK), which contains data on 

the award, type, duration, and link count as task size 
indicator; 

2) Technical complexity and popularity (TECH), which 
contains data on both the number and popularity of 
platforms/technologies required to be used in a task; 

3) Worker characteristics (WORKER), which includes the 
number of workers registered, and the average and 
maximum reliability of the registered workers; 

4) Competition Network (NETWORK), which represents 
the results of graph properties calculated from Bipartite 
graph with workers and tasks as nodes, worker 
registration in task as directed edge, and modularity, 
PageRank and strongly connected components as the 
chosen network metrics. 

Table II provides details of the metric descriptive 
statistics.  Some metrics such as Award, type, duration are 
straightforward and used in existing studies. Next, we 
introduce the derived metrics proposed by our study in more 
detail.  
1) Measuring Link Count as Task Size Indicator  

Classical size measures such as lines of code are not 
accessible in our study through the dataset. Alternatively, 
we introduce an additional metrics to measure the size of 
task based on the number of external website links provided 
in the task description link count (measures the number of 
external website links contained in the task description). In 
TopCoder, a task description is basically natural language 
text, with largely varied formats and lengths. External links 
to dependent interfaces/modules or screen mockups are 
frequently provided as detailed requirement descriptions. A 
large chunk task could have a very long task description, or 
just contain a link to an external file with very complicated 
screen mockups.  Therefore, we argue that link count could 
be a better indicator for task size than lines of code count in 
our study. 
2) Deriving Technology Popularity  

In crowdsourcing, technical complexity and popularity 
have a direct impact on the scope and availability of worker 
resources that a task is targeting. Typically, task description 
involves multiple technologies and platform requirements. 
We group similar technologies into categories and that 
result in 30 different technology categories. For example, 
JavaScript technologies are represented in multiple tags 
involved in a task description. The technologies are 
elaborated, in which "Node.js", "Angular.js", "JQuery", and 
"JavaScript" are different technologies in the raw dataset. 
We did group similar technologies as one technology and 
grouped other technologies in similar way which results in 
30 different technologies. In addition, to measure the 
popularity of technologies, we give a weighted value for 
each task depending on the frequency of occurrence of 
technologies and platforms in the whole dataset. First, we 
extract and compute the number of technologies involved in 
a task from its “technologies” attributes. Then, the 
popularity of each technology is computed using equation 1 
below: 

 
Fig. 2. Failure Prediction Framework. 

 

TABLE II. METRICS DESCRIPTION AND DESCRIPTIVE STATISTICS. 
Category Variables Description Min Max Mean Median STDEV 

 
Task 

Award Dollars in task description. 0 100000 896.02 500 1744.46 
Type Type of tasks, i.e. First2Finish, Assembly, Bughunt etc. 1 14 - - - 

Duration Total available time from registration date to submissions 
deadline 

0 73 16.86 9 12.6 

LinkCount Number of links to detailed requirements or screen mockups in 
task description 

0 58 2.32 2 3.49 

Tech NumTech Count of different technologies for task 1 11 2.73 2 1.20 
MaxTechPop Most popular technology used within task 0 23.62 17.34 18.41 7.36 
SumTechPop Total popularity weight of all technologies used for 0 76.98 26.74 23.62 16.50 

Network PageRank The importance of task (node) using PageRank 4.72 10 5 0.11 11.9 10 5 6.05 10 5 157.20 
StrongCompNum Connectivity of tasks to other nodes (tasks and worker) 0 12688 2518.97 2501.5 1519.61 

Modularity Strength of network clusters or groups 0 13 4.51 4 3.92 
Worker NumReg Number of registrants that are willing to compete on total 

number of tasks in specific period 
0 3296 12.32 10 48.35 

AvgRely Average reliability of the involved workers 0 1 0.15 0.12 0.12 
MaxRely Max reliability of the involved workers 0 1 0.56 0.6 0.28 

 
 
 



                            (1) 
Where  is the total number of different technologies (i.e. 
 is 30), and  is the total number of tasks (i.e.  is 4,872). 

If a task involves a technology , the corresponding  will 
be 1, otherwise it will be 0. For tasks involving multiple 
platforms or technologies, we use the sum of the weighted 
average of TechPopularity among all technologies to the 
task as sum_Tech_Pop. Afterward, we get the maximum 
TechPopularity form technologies and add it as additional 
derived feature max_Tech_Pop. We make two basic 
assumptions in measuring complexity and popularity. One is 
that the greater the number of platforms/technologies a task 
requires, the higher its complexity. This is consistent with 
assumptions and evidence in Mao et al.’s pricing study [6], 
in which the number of technologies is explicitly modelled 
as one of the 16 pricing drivers. The other assumption is that 
the more popular a platform/technology is, the greater pool 
of potential workers. The evidence is shown in Fig. 3, where 
the horizontal axis shows the Top-10 technologies in our 
dataset crowdsourcing tasks, and the vertical axis shows the 
corresponding frequencies of the number of tasks requiring 
that technology (in Blue columns) and the number of 
workers with skills in that technology (in Red columns). 
There is a clear correlation between these two data series. 

3) Measuring Task Competition Network 
To build the graph, we consider unique workers as one 

type of nodes and tasks as another type of nodes, then define 
a directed edge from each worker if he/she registered in a 
task. Because we have two set of nodes, we can be represent 
as Bipartite graph. The graph contains all the tasks and their 
registered workers between Jan 2014 and Jan 2015.  

Fig. 4 demonstrates an example structure of Biparties 
graph to measure the network properties of each task.  In 
Fig. 5, the pseudo-code shows the algorithm used for the 
construction of the graph. Based on network analysis, we 
will study the influence of network metrics including 
Modularity Class, PageRank, and Strongly Connected 
Component.  

Modularity characterizes task connection density to help 
understanding the structure of a large network [19]. 
PageRank quantifies the importance of nodes in the network 

[20]. Strongly Connected Components in directed graph 
adds a new information about different groups of nodes 
strongly connected based on backtracking the graph [27]. 

4) Measuring Developer Reliability 
For each task, we seek to predict the status from the 

profiles of the registered pool of workers. Besides the size 
of the registered pool of workers, i.e. the number of 
registrants, we also consider the developer reliability factors 
of the resource pool. Our assumption is that skilled and 
reliable developers undertaking familiar tasks are more 
likely to deliver qualified software assets. To measure how 
reliable developers are, we adapted the definition of 
developer reliability factor from TopCoder platform. More 
specifically, “the reliability factor is calculated as the 
percentage of the last 15 projects that a member registers for 
in which that same member presents a timely submission 
that passes review. Based on this definition, we derive two 
metrics for each task: 1) AvgRely, which is the average 
reliability of all registered workers; and 2) MaxRely, which 
is the highest reliability among all registered workers. 

IV. STUDY DESIGN 
To evaluate the proposed failure prediction framework, we 

design the following research questions (RQs), in 
competitive software crowdsourcing tasks: 
RQ1: What are the influencing factors that lead to a task 
failure? By analyzing different attributes in the dataset, 
identify the top factors influence the outcome, measure the 
new defined metrics derived from the raw data. In addition, 
our study will incorporate the network metrics which are 
missing in Dubey et al.’s study. 
RQ2: Can we build predictive methods for CSD task failure 
based on the identified factors? We will apply different 
machine learning techniques using the extracted metrics to 

 
Fig. 3 Popular Technologies Used in TopCoder. 

 

 
Fig. 5  Pseudo-code for establishing task competition network. 

 

 
Fig. 4. Illustration of a Bipartite Worker-Task Competition Graph. 

 



train predictive models and evaluate the prediction 
performance. 
RQ3: To what extent does the purposed predictive model 
improves the current baselines? We will compare our 
proposed predictive model with current in-house practice by 
TopCoder.  

A. Dataset 
The dataset investigated in our study contains 4,872 

competitive software development tasks from Jan 2014 to 
Jan 2015, extracted from the TopCoder website. Each task is 
associated with a set of metadata characterizing task 
attributes such as ID, name, start date, end date, challenge 
types, platform, technologies involved, etc. The outcome of 
a task is measured by the number of workers signing up and 
submitting for the task, evaluated scores of the 
submission(s), and the end status of the tasks (i.e. completed 
or cancelled). According to TopCoder's definition, a 
completed task should have received an accepted 
submission with a score of at least 75 out of 100. Otherwise, 
it will be marked with the label of “cancelled” due to either 
zero submissions or low quality submission score lower 
than 75. For a completed task, either the Top-1 or Top-2 
winners will receive the award according to a detailed 
arrangement in the task description. 

To derive answers to the RQs, we conducted the following 
data analysis and evaluation experiments. 

B. Evaluation Procedures 
1) Data Preprocessing 
We first filter historical tasks that have incomplete 

information (e.g. tasks with missing data on important task 
attributes such as award). Then, in order to better extract 
knowledge of successful software development tasks, we 
removed extreme values and outliers such as a task prized 
$100,000 and attracted 3,296 developers.  In fact, this task is 
divided into 5 “swift debugger” sub-tasks which priced 
$20,000 divided among multiple winners over a period at 30 
days of continuous competition. These tasks, each involving 
dynamically identifying and awarding multiple winners over 
a certain period, were removed it to reduce the impact of 
potential biased or irrelevant empirical knowledge. 

2) Data Balancing.  
Our dataset was imbalanced with 84.5% of the tasks 

labelled as successful tasks. To overcome the data 
imbalance issue, we applied the Synthetic Minority Over-
Sampling Technique (SMOTE) [10] to create extra data 
points based on the minority, which in our case are the 
failed tasks, by generating synthetic examples. The settings 
for SMOTE algorithm for our predictive model was as 
followings. The number of minority class samples is 754; 
Amount of SMOTE 431%; Number of nearest neighbors 
was k=5. Based on the dataset the values of SMOTE chosen 
to make the number of task failure around 50% of the 
trained dataset.  

3) Data Transformation 
We adopted some data preprocessing operations to 

address the quality issues of the data. 
Randomize. We applied a random shuffle to the order of 

instances to eliminate any order issues from the generated 
failed data points that would affect the machine learner 
performance. 

Normalization. We normalized each attribute to the 0-1 
intervals to reduce the effect of different value scales. 

4) Learner Selection 
We ran the dataset with the identified attributes in Table 

II and the target feature was the task outcome, in which the 
value either success or failed, using a set of popular machine 
learners used in defect prediction research, including 
Random Forest [28], Naïve Bayes (NB) [29], Logistic 
Regression, K-Nearest Neighbor (KNN, i.e. K=10 in our 
study) [25], and StackingC (Ensemble Method) [21].  Based 
on Hussain et al. conclusion [20], we used Stacking method 
by setting the base-level classifier with (RF, NB, KNN) and 
Logistic Regression model as meta classifier. 

5) Model Evaluation 
Lastly, we applied a 10-fold cross validation to split the 

dataset into training sets and testing sets. We trained the five 
learners on the training set, and then applied the trained 
model to the test set. In this paper, we employ Precision, 
Recall, and the F-measure that is the harmonic mean of 
Precision and Recall, to assess the performance of the 
baseline and the failure prediction models. We adopted 
these three indicators based on the widely cited studies done 
by Menzies et al. [29]. According to definitions of these 
three indicators, we favor prediction results with high 
Precision, high Recall, and high F-measure.  Equations 2, 3 
and 4 shows how we calculate these three measures. 

 (2) 

 (3) 

 (4) 

6) Comparison Baselines 
To compare the prediction performance, we used two 

comparison baselines: 
a. TopCoder’s in-house predictor  
TopCoder currently employs a heuristic-based predictor in 

which three coded colors (RED, YELLOW, and GREEN) to 
project task outcomes; it involves three simple rules with 
respect to the sum of the reliability ratings of all registered 
workers for a task. More specifically, a worker’s reliability 
rating is a numeric rating between 0 and 1, accounting for 
the percentage of a worker’s successful submissions over 
his/her last 15 registered tasks. If the reliability ratings sum 
is greater than or equal to 2, the predictor produces a 
GREEN label, as an indicator of success for the task to the 
requester; if it is less than 1, the predictor produces a RED 
indictor, representing a most likely failed task. While 
YELLOW is the result in-between of 1 and 2, which is an 
uncertain situation for a task status. We implement the 



TopCoder predictor and use it as one of the comparison 
baselines. Then we compare its performance with our 
approach using different learners. 

b. Prediction Models in Dubey’s Study 
 Dubey’s study provided a top five influence factors with 
statistical exploration for the dataset from TopCoder 
between 06/01/2012 to 12/31/2014. The study used Award, 
Task Category, Duration, Number of Registrants, Number 
of Technologies, and Maximum Reliability of workers, 
which are also used in our model. In addition, they also 
included the winners’ placements, the time for the first 
submission, and the quality of the submissions. We don’t 
employ these in our model because such information would 
not be available until task completion. The only reported 
best performance measure in Dubey’s Study is an 89% of F-
measure from a Random-Forest predictor. We consider it as 
the second baseline for our study.  

V. RESULTS 

A. Answer to RQ1: Influencing Factors 
To identify the most influential factors of task outcomes, 

we apply four different feature ranking techniques including 
correlation analysis (Corr.), Gain Ratio, Information Gain 
(Info. Gain), and Symmetrical Uncertainty (Symm. Uncer.). 
The result is summarized in Table III. According to the 
feature selection results, which indicate that among the 
investigated factors, the top influential factors are the 
average of reliability scores for workers (AvgRely); the 
highest reliable worker score (MaxRely); links in the 
description (LinkCount); the number of registered workers 
(NumReg); the number of technologies required 
(NumTech); and the modularity of competition network 
(Modularity), and so on. Next, we briefly summarize these 
factors. 

1) Worker Reliability (AvgRely and MaxRely) 
Table III suggests that crowdsourcing success is largely 

associated with worker reliability, with AvgRely and 
MaxRely rank as the 1st and 2nd influencing factors. The 
higher the average reliability of registered workers is, the 

greater probability that the task is successfully completed. 
While MaxRely refers to the highest reliability among all 
registered workers, it is less significant than the average 
reliability in differentiating cancelled tasks from successful 
ones. 

2) LinkCount 
LinkCount is ranked as the third factor for the task 

success. Typically, additional description or specification 
details are provided as links embedded in task description, 
to facilitate worker understanding.  

3) Technologies (NumTech and MaxTechPop) 
The results also show that two of the technological 

factors, i.e.  NumTech and MaxTechPop, are ranked as 5th 
and 7th in the list. This confirms our assumption that the 
more popular the technology is, the greater possibility to 
succeed due to potentially larger worker supply pool. 
However, the positive correlation between NumTech and 
task success is counter-intuitive. A possible explanation 
would be that the multiple technology complexity has been 
taken into consideration into motivating factors such as 
higher award in attracting more capable workers. On the 
other hand, it is not necessary to derive that a low popular 
technology will be subject to greater failure chance. In one 
case, we found 78% of tasks (i.e. how many tasks in total 
287) require APEX technology had succeed despite the low 
supply of workers (68 workers) that registered in similar 
tasks that require APEX technology.  

4) Network 
Modularity is ranked as the 6th factor, while the other two 

network factors, i.e. PageRank and StronglyConnected-
Components, are ranked the last two in the list.  

5) Task (Award, Duration, Type) 
Award is ranked 8th in our study, while it is ranked as the 

4th factor in Dubey’s study. Duration is ranked 9th in our 
study, while it is ranked as the 5th in Dubey’s study. Lastly, 
Dubey’s model ranks the challengeType as the 2nd factor; 
while it is only ranked 10th in our study. The results 
indicates that some additional factors proposed in our study 
show a greater influence in task success. 

B. Answer to RQ2:  

TABLE III. DIFFERENT ATTRIBUTE SELECTION AND ATTRIBUTE RANK. 
Metric Corr. Rank Gain. Ratio Rank Info. Gain Rank Symm. Uncer. Rank Overall Rank 

AvgRely 0.31316 1 0.10542 4 0.55885 1 0.17738 3 1 
MaxRely 0.25547 2 0.10403 5 0.52526 2 0.17367 4 2 

LinkCount 0.04174 7 0.11529 2 0.38853 4 0.17781 2 3 
NumReg 0.08237 5 0.10061 6 0.52156 3 0.16869 6 4 
NumTech 0.04351 12 0.1255 1 0.31337 9 0.17922 1 5 
Modularity 0.01791 5 0.0989 7 0.33595 8 0.15281 7 6 

MaxTechPop 0.01601 13 0.11522 3 0.34809 6 0.17313 5 6 
Award 0.17514 3 0.06206 9 0.2468 10 0.09918 10 8 

Duration 0.04026 8 0.01 8 0.36274 5 0.15017 8 9 
Type 0.11674 4 0.01705 11 0.03093 11 0.02198 11 10 

SumTechPop 0.01304 12 0.06766 9 0.33685 7 0.11269 9 10 
PageRank 0.01811 9 0.01069 12 0.0231 12 0.01462 12 12 

StrongCompNum 0.00926 13 0.0084 13 0.0086 13 0.0085 13 13 
 



 The results of our empirical study are presented in Table 
V.  In general, an encouraging performance results in the 
task failure predictive models. With each machine learner 
we include the precision, recall and f-measure for each label 
(i.e. failure vs. completion). The top-3 failure learners for 
each measure are marked in bold in Table V.  

According to precision, which represents the proportion 
of the predict outcome over the actual outcome, all learners 
can predict “failure” class with a precision greater than 
95.6%, with the highest precision of 99.9% from Naïve 
Bayes. This means that more than 95.6% of all predicted 
failures are actually failures. According to recall, the 
accuracy is also very good (i.e. ranging from 79.1% from 
KNN with k=10, to 83.1% from Logistic). Though this is 
also considered high performance, it indicates that there are 
about 20% of actual failures are missed by the prediction 
models. According to F-measure, the harmonic mean of 
precision and recall, we observe that different learner 
performs between 88.1% from KNN(k=10) and 89.6% from 
NB, RF, and StackingC. It’s worth noting that StackingC, as 
an ensemble approach, does not outperform individual 
classifiers. This is different from the conclusion reported in 
[20]. Nonetheless, Naïve Bayes, StackingC, and Random 
Forest are among the Top-3 learners in our case, 
outperforming the other learners. 

Even though, our scope is to purpose a failure prediction 
model. We have to introduce the completion-prone in our 
study, Table V, to accurately compare our learner’s 
performance with to TopCoder Predictor the first baseline, 
and Dubey’s best model, Random Forest, the second 
baseline. This will be detailed in the next section. 

C. Answer to RQ3:   
 Note that the performance for predicting “completion” 

class is also reported in Table V in order to compare with 
the selected baselines. The reason is that only performance 
for completion class prediction is reported in Dubey et al.’s 
study [12].  The top-3 completion learners for each measure 
are marked in italic bold, red colored, and gray shaded.  

As shown in the bottom part of Table V, all learners show 
improved performance, in terms of F-measure, over the 
TopCoder Predictor. For the first baseline of TopCoder 
predictor, the improvement is 19.1% (85.1% vs. 66%) in 
precision, 38% (100% vs. 62%) in recall, and 27.4% (91.3% 
vs. 63.9%) in F-Measure. For the second baseline, the best 
learner from Dubey et al.’s study, an improvement of 2.3% 
in F-measure is concluded. Since no other measures is 
reported in Dubey’s study, we cannot compare precision and 
recall measures. 

VI. DISCUSSION 

A. Predictability of Software Crowdsourcing Tasks 
This study provides empirical evidence on software 

crowdsourcing development task failure predication. Using 
the proposed failure prediction framework, esp. extracting 
features characterizing various factors from TASK, TECH, 
WORKER and NETWORK categories, the achieved 
accuracy was improved noticeably comparing to the 
TopCoder prediction baseline and slight improvement to 
Dubey’s results. The additional factors identified in our 
study, such as task competition network and technology 
popularity metrics help to contribute to such improvement.  

As further investigation, we also analyzed the 
predictability of task completion scores using the dataset 
and the five learners. The results in Table VI shows that the 
best predictor Naïve Bayes can predict the final score with a 
Mean Absolute Error (MAE) of 0.095, which is considered 
very accurate and encouraging. Based on learned proposed 
in this study, task requesters can have access to more 
insights on the likelihood of potential task outcomes based 
on ongoing dynamics of worker participations. As automatic 
monitoring and control support aid, if any failure proneness 
detected, task requesters can be warned and mitigation 
actions can be discussed and taken place accordingly.  

Considering the largely reported promising benefits of 
CSD such as 30% - 80% cost reduction compared to in-

 

TABLE V.  SUMMARY OF PREDICTIVE PERFORMANCE  
 

Method Label Precision Recall F-Measure 
Naïve Bayes Failure 0.999 0.812 0.896 

Completion 0.841 0.999 0.913 
Average 0.920 0.905 0.905 

Random Forest Failure 0.988 0.819 0.896 
Completion 0.845 0.990 0.912 

Average 0.917 0.905 0.904 
SVM Failure 1.000 0.801 0.889 

Completion 0.833 1.000 0.909 
Average 0.917 0.900 0.899 

Logistic Failure 0.965 0.831 0.893 
Completion 0.851 0.970 0.907 

Average 0.908 0.900 0.900 
KNN (K=10) Failure 0.993 0.791 0.881 

Completion 0.826 0.995 0.903 
Average 0.910 0.893 0.892 

KNN (K=5) Failure 0.981 0.812 0.889 
Completion 0.840 0.984 0.906 

Average 0.910 0.898 0.898 
KNN (K=3) Failure 0.956 0.828 0.887 

Completion 0.848 0.962 0.901 
Average 0.902 0.895 0.894 

StackingC Failure 0.997 0.814 0.896 
Completion 0.842 0.998 0.913 

Average 0.920 0.906 0.905 
Baselines 

TopCoder Predicator 
 

Completion 0.660 0.620 0.639 
Dubey’s model (RF) Completion - - 0.89 

 

TABLE VI. COMPARISON OF MAE IN FINAL SCORE PREDICTION. 
 

Method MAE 
Naïve Bayes 0.095 

SVM 0.100 
StackingC 0.157 

KNN (K=3) 0.155 
Random Forest 0.165 

KNN (K=5) 0.165 
Logistic Regression 0.165 

KNN (K=10) 0.184 
TopCoder Predictive 0.379 

 



house development or outsourcing, or the purposed 5 to 8 
times lower defect rate as compared with traditional 
software development practices [1], our results provide a 
complementary perspective and method to support better 
planning and managing crowdsourced software 
development. 

B. Practical Insights 
Our results indicate that crowdsourcing failure can be 

predictable. This is encouraging evidence in that there is a 
value in developing supporting tools for monitoring and 
controlling the risks of crowdsourced software development 
projects. Such supporting tool address the failure risk at the 
task design phase or during the task registration phase. It is 
very encouraging that by employing a simpler model, such 
as the Naïve Bayes learner, we can project failure-prone 
tasks to 89% f-measure with low MAE of 9.5%. 

More practical guidance can be concluded based on the 
most influential factors of task failure, which includes 
workers reliability, task size, award, and network degree, 
are the most influencing factors for crowdsourcing.  

1) Recommendation for Task Design 
In crowdsourced software development, importance steps 

in the task design phase consist of task decomposition and 
micro-task preparation. The empirical results lead us to 
derive a few insights to guide decisions in the task design 
phase, which we list as follows:  

• It is observed that workers with higher reliability 
scores lead to task success. For that, attracting a 
reliable worker to the task is an influential factor for 
successful outcome. 

• Task award is a not a major factor to attract workers, 
as it is only ranked as #8 factors, as shown in Table 
II. 

• Decomposing a task into a shorter set of tasks to 
reduce the risk of cancellation. The average duration 
of successful tasks is 14 days, while that of cancelled 
tasks is 18 days. More than half of the successful 
tasks are scheduled for 1 day. 

• Incorporate analytical-based learners can help task 
requestors monitor and predict failure risk and 
improving task design. 

2) Recommendation for Managing a Well-structured 
Worker Community 

Understanding the developer’s interaction, especially, on 
how they register in different tasks and their effects on each 
other that in which is captured by network analysis. For that, 
ensure a highly reliable worker who participates in task 
gives a greater chance of success for a crowdsourced 
software task. Thus, identifying and mobilizing the best and 
most reliable worker resource is essential. We offer insights 
from both a pre-registration resource identification 
perspective and a post-registration risk monitoring 
perspective. 

• Pre-registration: In a recent study, Mao et. al. 
proposed a recommendation system [18] that can 

learn from task similarity and competition history 
and recommended diversity of competition and both 
reliable workers and participatory workers to 
guarantee the quality of delivered assets. The results 
from our study confirms that it is more important to 
cultivate a diversified yet reliable crowd (i.e. with 
high AvgRely), rather than the best individual (i.e. 
MaxRely) in order to ensure greater confidence in 
crowdsourcing success.  

• Post-registration: The developer rating and 
reliability metric system on TopCoder contains 
much invaluable data to help understand workers 
participation and abandonment in his/her 
competition history. Though our proposed task 
failure prediction method is built based on historical 
project data, it can be extended and applied in real 
time cases in order to provide early risk indicators 
for task requesters. 

C. Limitations 
There are several limitations to this study. First, the study 

only focuses on competitive software crowdsourcing tasks 
on TopCoder platform. There are many non-competitive or 
collaborative crowdsourcing tasks, which may demonstrate 
different task organization, pricing patterns, and worker 
behaviors, etc. Second, there are some competition factors 
such as number of available tasks to select, number of tasks 
a worker has, etc. that might also impact on task failure 
likelihood. These are not included in current study yet and 
will be one of our future research topics. Third, proposed 
metrics such as studying of supply and demand for 
technologies and worker, social network analysis and others 
need a dedicated study to get more understanding of the 
factors for task failure. Fourth, regarding internal threats, 
different settings (e.g., learner, sample size) may lead to 
different model outputs. 

D. Threat to Validity  
Two types of threats of validity will be discussed. We 

used Python Sklearn to perform our empirical study. The 
results of Random Forest machine learner impacted by 
imbalanced data in which our study includes 15.4% failure 
rate. For that, we used SMOTE, an oversampling approach, 
to balance the dataset. SMOTE generates the new data 
points based on the historical data points, which in real-
world may differ than the ones created using SMOTE.  

Even though Naïve Bayes performs the best in our study, 
the algorithm assumes that all the features independent to 
predict task outcome [23]. In fact, some features in the study 
have dependencies such as the average of reliability and the 
maximum of reliability.  

Many other possible additional factors could affect the 
task completion status, such as how familiar or experienced 
individual workers are to the task? To what degree 
individual sign-up worker can handle multi-tasking? How 
many other similar tasks are simultaneously competing 
resources with the task? How about other semantic factors 



from task description? The effects of such factors are not 
considered in current framework. 

Threats to external validity by considering the 
generalization of the study to other types of crowdsourcing 
tasks, or other platforms than TopCoder. Our research is 
focused on software development crowdsourcing tasks and 
in particular TopCoder. Other platforms offer a different 
flow of requesting the task and evaluating the workers. 
Thus, the application of the proposed framework might need 
to be carefully examined to accommodate such differences.  

VII. RELATED WORK 

A. CSD Success Factors 
Messinger highlighted three elements of successful 

software crowdsourcing quality community, right 
incentives, and trust and transparency [17]. Software 
crowdsourcing platforms attracts developers with certain 
skillsets to participate in the open-call tasks, and the quality 
of workers’ leads to success in the crowdsourced tasks [7, 
8]. CSD platforms, such as TopCoder, typically measure the 
quality of each worker by assigning a community rating 
score based on his past behaviors, from both quality and 
quantity aspects. Additionally, a Reliability score is 
employed by TopCoder to indicate the reliability and 
consistency of a worker’s performance in his/her most 
recent 15 tasks. These types of scoring schemes provide a 
good evaluation for the quality workers in the platforms. 

Identifying the motivation for workers to participate and 
submit for tasks is one of the key concept to attract them in 
proposed task. The incentives for the workers are not 
limited to monetary reward. Borst [19] stated that the 
extrinsic motivations for workers effected the participation, 
behavior and performance positively by the existence of the 
reward. An evidence, in some crowdsourced tasks in 
TopCoder with zero monetary reward shows a success 
outcome. For that, highly self-motivated workers submit for 
such tasks based on Borst study [19]. For increasing amount 
of award, Yang [5] shows that number of registered workers 
in similar tasks shapes an inverted U-curve. For that, a 
careful chose of right incentives is not exclusive to the task 
reward or requirement; it’s also depends on the workers’ 
motivations to participate on certain task. 

The uncertainty of task outcome raises the trust issues 
between workers and task owner. From the task requester’s 
perspectives, it is challenging to identify best workers for 
their tasks, and even more challenging to monitor risks 
related to workers reliability shortfalls. CSD platforms 
employ peer-review processes to evaluate workers’ 
submissions, there might be possibilities that the review 
processes can be strategically manipulated by workers or 
task owners [24]. In addition, workers provided information 
about their teammates or opponents outperformed the 
anonymous condition in task delivery [4]. 

B. CSD Decision Support 
To address the potential task completion risk, Dubey et 

al. identify the top five influence factors. By using a 
different machine learning algorithms with exploratory 
analysis. The study highlighted these factors considering 
information gain weight for ranking the factors. The results 
show the most influence factors for task completion are 
rating of register workers, type of the task, winner’s prize 
and duration of the task respectively. Despite that, the 
importance on analyzing task features such as, worker 
reliability, incentives, technologies, complexity and duration 
helps the requester to propose a well-structured task. On one 
hand, task features such as task complexity and task 
incentives consider to be motivations for workers to 
participate in task. On the other hand, attracting strong 
developers with high rating and reliability score effects on 
the success of a task. Thus, capturing all these features can 
be achieved by representing the workers and tasks in graph 
and extract the properties to predict the task status 
accurately, in which not been discussed in the study. 
Actually, the best performance algorithm from Dubey’s 
study will be consider as baseline for our proposed model. 

Another type of CSD decision support is providing a 
relevant pool of workers for purposed new tasks [18] [9] or 
recommending appropriate tasks for workers [7] [16]. 
Existing studies deriving workers quality based on their 
reputation and expertise based on their earlier tasks 
participation [7] [13] [15] [18]. As an efficient way to 
identify qualified workers, Mao et al. proposed a content-
based recommendation system to automatically match tasks 
and developers based on historical data [18]. The system 
learns from the winning history for recommending reliable 
developers and learns from registration history to suggest 
suitable participants for available tasks. Yang et al. 
proposed a dynamic decision support to help worker 
choosing the suitable tasks [7]. For matching the best 
workers for available tasks, Mao et al. introduce a decision 
support of Prestige Network Enhanced Developer-Task 
Matching for Crowdsourced Software Development [9]. 

C. Social Network Analysis in CSD 
Social network analysis techniques quantify the social 

behaviors represented in a set of nodes and edges [19] [11]. 
Existing studies have applied social network analysis in 
CSD in the competition network between developers [14]. 
PREM examines the developers’ historical task data and 
rating to construct a competition network between winners 
and registered workers aiming to match suitable workers 
with tasks [9]. In like manner, Zhang et al. build a 
competition network and concluded a positive correlation 
between the social network properties of developers and the 
outcome of the projects [14].   

In our study, we will construct the crowdsourcing 
participatory network to capture the tasks and developers in 



which we include the social network metrics for each task as 
additional features to build failure prediction models, to 
improve the performance of task failure prediction. 

VIII. CONCLUSIONS 
In the context of crowdsourced software development 

(CSD), projects are typically organized into dozens or 
hundreds of micro-tasks, it is not feasible to manually 
monitor the ongoing progress status of large number of 
crowdsourced tasks. Despite the increasingly reported 
benefits associated with CSD, one of the major practical 
concerns is the limited visibility and control over task 
progress. This study seeks to precisely detect cancellation-
prone tasks and thus helps to take management actions to 
prevent potential delay. We developed empirically based 
metrics and employed machine learning techniques to 
automatically predict task failure risk based on historical 
data. The Study's main results include: 1) Workers 
reliability, links in the description, number of registered 
workers, number of required technologies, and task-workers 
network modularity are the most influencing factors for 
predicting crowdsourcing failure; 2) The top-three learners 
for task failure are Naïve Bayes, Random Forest, and 
StackingC, with precision above 98.8%, recall above 81.2%, 
and F-measure above 91.2%; and 3) The proposed best 
learners significantly outperform the two baseline models in 
our evaluation. Future research direction includes broader 
data collection and evaluation, as well as utilizing text 
mining approaches to understanding the effect of task 
description on task failure prediction.  
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