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1.1 Introduction

In the competitive commercial software market, software companies strive
to incorporate business and technology changes. Industrial innovation and
ability to confront emerging technologies help companies to sustain a com-
petitive advantage. Software in operational use is continuously evolving due
to new changes and requirements. To accommodate rapid changes, compa-
nies require improvement in software processes. Project managers demand
processes that support fast results and �exible feature delivery. The ultimate
goal is to achieve competitiveness and business success. The key to survive
is to develop and market quality products, on time, and within budget [2].
Companies feel compelled to quickly adapt and change the ways they develop
products and services and release software the moment it is ready.

Software releasing is the process of delivering the product into the oper-
ational environment for usage by its end users [15]. A slip in release causes
millions of dollars in lost revenue. On the other hand, if delivered early, these
projects display excessive error quantities and low levels of reliability. A prod-
uct, or a major version of the product, can only be released when it is ready.
The decision dilemma project managers often face is whether to prioritize fur-
ther functionality or further test/re-work/ process improvement, popularly
known as the �stopping rule� problem [9]. This decision cannot be made ad
hoc, but rather needs analytical evidence. Release readiness (RR) can pro-
vide this evidence and facilitate release decisions. RR is a time-dependent
attribute of the product release. It aggregates a portfolio of release process
and product measures to quantify status of the release. Proactively, during
the whole release cycle, it is important to know which factors are not per-
forming su�ciently well (e.g. related to test performance) and likely to limit
release readiness.
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This book chapter is a part of an ongoing e�ort towards achieving improved
RR through monitoring and analysis of RR and software process evolution.
It presents the state-of-the art concepts related to software RR (e.g. existing
RR approaches, metrics, tools, empirical evaluation). Emphasis is given to
the approaches of RR evaluation. Based on relevant studies a comprehensive
systematic mapping study is performed and reported. Comprehensive anal-
ysis of related works reveals existing gaps, illustrates the motivation of our
research and our contributions towards the body of knowledge. This chap-
ter also discusses identifying, monitoring and analyzing attributes limiting
release readiness (called bottleneck factors or BFs). Our goal in this chapter
is to understand frequencies and pattern of occurrence of attributes a�ect-
ing project success by restricting the status of release readiness, at di�erent
stages of release cycle.

Our former explorative case study research [1]on open source software
(OSS) projects provided an initial understanding of the frequent bottleneck
factors for release readiness and their likelihood of subsequent occurrence.
It revealed the importance of systematically studying and analyzing bottle-
neck factors across individual projects to understand common patterns and
their frequency of occurrence. To achieve this goal, we propose a �ve-phased
method for monitoring and controlling RR by learning BFs across projects. It
can be applied for any ongoing product release development project. Initial
validation of proposed method is performed based on 34 open source projects
from the GitHub repository. The projects were taken from two domains, i.e.,
desktop-based and web-based projects. We monitored the performance of six
established release readiness attributes, and primarily focused on the lowest
performing attributes i.e. bottleneck factors.

Early identi�cation of bottleneck factors and understanding their common
patterns and frequency helps release engineers in proactively addressing po-
tential resource limitations and initiate process changes. As a form of learning
across projects, we are interested in answering the following questions:

• How to monitor and analyze bottleneck factors limiting software release
readiness?

• Are there any common patterns in the occurrence frequency of bottleneck
factors?

• Do occurrence frequencies of BFs vary across domains with regards to
project-characteristics such as (i) project size, (ii) number of contributors,
(iii) release development phase?

Proposed method also combines the strengths of analytical methods with the
intuition of human experts. Inspired by the idea of software process control,
the approach assumes continuous monitoring of the bottleneck factors iden-
ti�ed in the learning process. The actual performance is compared with the
planned one. In case of above-threshold deviation, an out-of-control situation
is identi�ed and handled by human experts. Learning BFs and their charac-
teristics facilitate handling out-of-control situations. The rest of the chapter
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is divided in four major sections. Section 2 presents the background and
literature review. It also reports results from a semi-systematic mapping per-
formed on related works. In Section 3, methodology of the proposed method
is illustrated. Section 4 empirically validates the proposed method with re-
spect to open source software. Section 5 presents summary of the chapter
and future research.

1.2 Background and Related Works

1.2.1 Background

1.2.1.1 Software product management

Software Product Management, is a key success factor for companies [19]
that facilitates timely production and faster product acceptance in market
[8]. Authors in [6] de�ned software product management as

�the discipline and role, which governs the software product (or solution or service)
from its inception to the market/customer delivery in order to generate biggest
possible value to the business�.

In software product management practices, a product manager is responsi-
ble to decide product release content, timeframe, price and implements the
business case in consideration of technical aspects [7].

1.2.1.2 Software release in iterative software development

Iterative software development is one of the most widely adopted techniques
in software development. It supports incremental software development in
small iterative cycles and allows incorporation of stakeholders' feedbacks in
ongoing development cycle. In iterative context, software release consists of
multiple iteration and delivers the product into the operational environment
for usage by the end users [12]. Individual iteration might have iteration
releases, where a partially completed, stable version is released internally
[11].

1.2.1.3 Release readiness attributes and Degree of satisfaction

Release Readiness attributes are attributes of the candidate system that can
de�ne and judge the RR of the system. Satisfaction of Defect �nd rate (DFR),
and Bug �x rate (BFR) are two examples of RR attributes. Approaches
like Goal-Question-Metric (GQM) [4]paradigm can be applied to guide the
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selection of RR attributes. Degree of satisfaction refers to project manager's
satisfaction towards the performance of an RR attribute. In [21][12], the
degree of satisfaction of the RR attributes is evaluated using the concept of
membership function from fuzzy set theory [25]. A membership function μ_F
(x) quanti�es the degree of membership of element x in a fuzzy set F. The
project manager select appropriate shapes and corresponding parameters of
the membership function associated with each individual RR attributes to
evaluate the degree of membership (i.e. the degree of satisfaction) based on
its value. Further details can be found in [21].

1.2.1.4 Release readiness

At any point in time during a release cycle [0,T], the measurement of RR
attributes helps project managers assess the status of the next release. RR
is de�ned as the aggregation of various RR attributes that are considered to
be essential to judge whether a product release is ready for shipping. Project
managers based on successful legacy release and personal experience provide
the relative weights of RR attributes. Further details are discussed in later
sections and also in [21].

1.2.1.5 Bottleneck factors

A bottleneck in general is a factor that limits the performance of an entire
system. Resource bottlenecks in project management are a well-understood
phenomenon. We transfer this idea from project management to the study of
RR. For a given project bottleneck factor refers to the RR attributes that is
lowest satis�ed and thus limits RR.

1.2.2 Related Works

Former literature [22, 17] considered defect tracking and test related metrics,
e.g., number of defects, defect removal rate, test execution rate, test pass
rate etc. in RR evaluation. Wild et al. [24] proposed to consider metrics from
multiple dimensions (e.g., requirements, functionality, reliability etc.). Indus-
try tools, e.g. Borland Team Inspector and PTC Integrity , visualize and
verify functionality, code and test related metrics before releasing a piece of
software. Most of these approaches concentrated on evaluating RR at the
end of the release. Continuous awareness of the status of the product release
is important [21] to ensure project success. To accurately model the release
process and reveal RR, multiple attributes and their underlying relationship
should be considered [10]. Signi�cant uncertainties are associated with release
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process [15]. Without considering these uncertainties and adapting towards
changes, RR evaluation can be misleading and critically risky. While ana-
lyzing our related works in a semi-systematic mapping, we focused on these
issues. From a signi�cant number of related publications, we identi�ed 22
papers most relevant to our research and investigated following questions:

• Q1: What are the types of approaches proposed for determining RR over
time?

• Q2: What are the types of contributions o�ered in determining RR over
time?

• Q3: What are the RR attributes and metrics selected in RR evaluation
over time?

1.2.2.1 Q1: What are the types of approaches proposed for
determining RR over time

In literature and industry, RR is determined in di�erent ways. Broadly, they
can be categorized into four categories as discussed below. Fig. 1.1, presents
a mapping of related works with respect to type of approaches proposed and
year of publication.
Checklist based approach: These approaches check a set of RR criteria

at the end of release cycles before releasing a software [19, 13]. They exten-
sively rely on subjective questions that are hard to judge. In addition, these
approaches do not support any proactive analysis of RR. Around 22% related
works fall under this category
Testing metrics based approach: These approaches [12, 14, 23] con-

sider testing related metrics (e.g. test passing rate, defect �nd rate) and
build various RR indicators. For example, authors in [22] calculated time
to release based on defect data, authors in [14] compared objective metrics
with past project data using spider chart to indicate RR. These approaches
exclusively focus on the testing phase and cannot guarantee continuous mon-
itoring. Around 43% of related articles are under this category
Defect prediction model based approach: These approaches assume

that remaining defects in software is the major indicator of the readiness. This
approach primarily focuses on creating a prediction model for remaining de-
fects. Multiple techniques e.g. Neural Network [18], tracing code changes[24]
are applied to identify remaining defects. Due to exclusive focus on remaining
defects only, these approaches measure RR partially, while leaving other RR
in�uencing dimensions uncaptured. 22% of related works applied approaches
of this category.
Multi-dimensional metrics aggregation based approach: These ap-

proaches evaluate a portfolio of product, process related metrics and aggre-
gate them into a single measure of release readiness. We found three studies
[21, 3, 20] applying this approach. These approaches provide a broad overview
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Fig. 1.1: Mapping related works with respect to type of approach applied and
year of publication

of RR and enables proactive analysis of RR. However, adhoc selection of met-
rics may generate misleading RR evaluation.

1.2.2.2 Q2: What type of contribution these approaches focused
over time

In Q2, we analyzed the type of contributions proposed over time in related
works. Fig 1.2, denoted contributions using keywords certi�cation, measure-
ment, evaluation, prediction and recommendation. Certi�cation means con-
sideration of individual metrics and comparison with their expected values
to certify their individual status e.g. checklist based approaches [19, 12]. Ap-
proximately 30% of related works certi�ed metrics to evaluate RR. Measure-
ment means isolated evaluation of multiple metrics. For example, measuring
defect free hours before a release [5]. In this approach, metrics are not aggre-
gated but measured in isolation to take the release decision. Evaluation means
evaluation of multiple metrics along with aggregating them into a meaningful
single measure, which re�ects the status of release readiness. 30% of related
works applied this approach. In [16], author built a neural network to esti-
mate defects and predict release readiness. Authors in [21] applied time series
extrapolation techniques to predict future RR. In all these approaches indi-
vidual attributes are measured and then compared or aggregated to identify
RR. However, the selection of attributes is crucial, while mostly performed
adhoc. This chapter will address this problem in next sections.
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Fig. 1.2: Mapping related works with respect to type of contribution and year
of publication

1.2.2.3 Q3: What are the RR attributes and metrics selected in
RR evaluation over time

By reviewing recent literature and industry articles, a signi�cant number
of RR attributes are extracted. Broadly all these can be categorized into
four RR dimensions that includes implementation status, testing scope and
status, source code quality and documentation scope and status. Example of
RR attributes related to each dimensions are presented in Table 1.1 below.

Table 1.1: RR dimensions and related RR attributes

RR dimensions Overview of related RR attributes

Implementation status Attributes related to feature implementation, change
request implementation, coding e�ort, continuous
integration, build trends, etc.

Testing scope and
status

Attributes related to defect �nding, defect �xing, test
coverage, test e�ort, etc.

Source code quality Attributes related to code review, coding style, code
smells, refactoring, code complexity, etc.

Documentation scope
and status

Attributes related to user manual, design documents,
test speci�cation, test case documentation, etc.

In our third investigation, we focused towards distribution of these RR
attributes in related works over time. We extracted the list of attributes from
each paper and categorized them in four categories stated earlier. Fig.1.3
presents a mapping of related studies with respect to RR metrics selected
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Fig. 1.3: Mapping related works with respect to RR dimensions addressed
and year of publication.

and publication years. From this mapping, the importance of Implementation
status and Testing scope and status dimensions becomes obvious compared
to other dimensions. Therefore, in our research, we narrow our scope by
considering these two RR dimensions only.

1.3 Methodology

In our former publication [1], we identi�ed evidence for existence of com-
mon patterns in BF occurrences. It is worthwhile to study these patterns in
understanding bottleneck factors. In this section, we propose a �ve-phased
approach, where each phase presents guidelines to systematically identify and
analyze BFs through individual projects, learning across this analysis to fa-
cilitate monitoring and controlling process changes. The approach is brie�y
discussed below.

1.3.1 Phase 1 � Selection of projects and RR attributes

A set of projects will serve as the basis for learning. This facilitates antici-
pating potential bottlenecks in similar new projects and investing e�ort to
proactively counteract. If projects are of di�erent nature, e.g., from di�er-
ent domains, it makes sense to look at the various domains separately. RR
attributes that are believed to in�uence release readiness as well as the rele-
vant observation period have to be set. Selection of attributes considered for
deciding about release readiness varies among projects and companies. The
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ultimate decision of RR attributes selection is upon the user. It is typically
based on the organizational goals and customer expectations. RR attributes
and observation period must be chosen in such a way that all selected projects
can provide the required data for each RR attribute over the whole observa-
tion period.

For each selected project, the required raw data per RR attribute must
be collected. As identi�ed earlier in (see Table 1.1) there are four major
dimensions for RR attributes. Each dimension is further described by a set
of possible RR attributes. These are di�erent aspects of software product
by which release readiness can be evaluated. Each attribute is quantitatively
described by one or more metrics. For example, the attribute satisfaction of
feature implementation at week k can be measured (on a weekly base) by a
metric called feature completion rate (FCR) de�ned as follows in Eq. (1.1):

FCR (k) =
(numof features implemented up toweek k)

(numof features requested up toweek k)
(1.1)

As FCR only refers to the completed features, this metric might not mea-
sure the progress of implementation most accurately, however it is good
enough to support an analytical approach for monitoring, controlling the
release status and improve the process and end product.

Approaches like Goal-Question-Metric (GQM) paradigm is e�ective to de-
sign an measurement program that ful�lls the goal of overall RR evaluation.
RR attributes corresponding to questions further re�ne the measurement
goal. Available data associated with each question quantitatively answers
them. For simplicity we scope our self within two major RR dimensions i.e.
implementation status and testing scope and status. Importance of these two
dimensions in RR evaluation already revealed in Section 2. We selected six
RR attributes from these two dimensions using the GQM approach as listed
in Table 1.2. The speci�c attributes and measures taken in this example are
highly context speci�c. They represent 50% of RR attributes known from
comprehensive industry guidelines available

1.3.2 Phase 2- Identifying Local and Global release

readiness

For each individual RR attribute, initially local RR metric is calculated. Sub-
sequently, local RR metrics are combined into a global RR metric representing
release readiness of the product. At any point in time t=t^* for any of the
selected release readiness attributes, the local release readiness (LRR) status
is a degree of satisfaction of individual attributes while applying piecewise
linear membership function. LRR is de�ned as the deviation from plan in
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Table 1.2: De�ning RR metrics using the top-down GQM approach

RR dimensions Attributes Questions Metric De�nitions Acronyms

Implementation
status

Status of
feature imple-
mentation

To what extent feature
requests are completed

# of features
implemented up to
week k / # of features
requested up to week k

FCR

Implementation
status

Status of
continuous
integration

To what extent
continuous integration
(CI) requests are
completed

# of CI requests
completed in kth
week/ # of CI
requests completed up
to week k

PCR

Implementation
status

Status of
improvement
completion

To what extent
improvement requests
are completed

# of improvements
implemented up to
week k / # of
improvements
requested up to week k

ICR

Testing status Status of
defect �nding

To what extent the
testing activity
reducing defects

# of defects found in
kth week / # of
defects found up to
week k

DFR

Testing status Status of bug
�xing

To what extent
detected bugs are �xed

# of bugs solved up to
week k / # of bugs
identi�ed up to week k

BFR

Testing status Status of
source code
stability

To what extent the
source code is
becoming stable

# of code churn in kth
week / # of code
churn up to week k

CCR

terms of its local RR metric. The measure is normalized to the [0,1] interval,
where level 0 and 1 means that the degree of satisfaction expected at time t
is null or respectively fully achieved. In general, the status will be somewhere
between these two extreme points.

We illustrate our terminology via an example. For that purpose, we con-
sider one release of duration 20 weeks in a project called P. For simpli�cation,
we consider only two RR attributes: (a) status of bug �xing, and (b) status
of feature completion, de�ned as bellow

bug fix rate (k) =
(numof bugs solved up toweek k)

(numof bugs identified up toweek k)
(1.2)

feature completion rate (k) =
(numof features implemented up toweek k)

(numof features requested up toweek k)
(1.3)

These are considered as objective metrics, which can be used to evaluate
the RR attributes. We measure the local RR of bug �x rate (BFR) & fea-
ture completion rate (FCR) (on a weekly time interval) following we have a
planned RR performance based on experience from successful former releases.
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For example, for BFR the minimum and maximum expectation are 1 and 10
bugs �xed per day respectively. In that case local RR of BFR for any value
x is calculated following the Eq. (1.4) below.

LRR(x) =


0 x < 1
x−1
10−1 1 ≤ x ≤ 10

1 x > 10

(1.4)

De�nition (Local RR): We assume that project P with duration [0, T ]
at given week t = t0 ∈ [0, T ] have

• a given set of RR attributes A = {a1, a2, ......., an};
• for each RR attribute a corresponding minimum and maximum expected

set of values are Amin(ai, t) and Amax(ai, t)
• corresponding actual values of RR attributes given by the n-dimensional

vector Aactual(ai, t)
• Then, LRR(ai, t0) ∈ [0, 1] is the local release readiness of attribute aiat

week t = t0. It is calculated based on the corresponding value in vector
Aactual(ai, t)and expected values of Amin(ai, t) and Amax(ai, t) following
Eq. (1.5)

LRR(ai, t0) =
Aactual(ai, t)−Amin(ai, t)

Amax(ai, t)−Amin(ai, t)
(1.5)

As illustrated in Fig. 1.4, the planned (dotted line) rate at week t=10 is
higher (0.64) than the computed actual (solid line) rate (0.56). Here, BFR
0.64 represents fully achieved Local RR (i.e. 1) and BFR 0 represents not
achieved Local RR (i.e. 0). Bars represent the relative performance degree,
which is 0.88 for week 10. It means we achieved a local RR of 0.88 for BFR.
Similarly, we measure the local RR of FCR (on a weekly time interval) as
de�ned earlier. The performance measure indicates that at week 10, the actual
performance is only 48% of the planned performance, which represents local
RR of 0.48 for FCR.

For any point in time (week) during the release, the global release readiness
GRR(t) metric is de�ned as the Weighted Arithmetic Mean (WAM) of all
local RR metrics.
De�nition (Global RR): For a given set of RR attributesA = {a1, a2, ......., an};

the local RR of any attribute aiat week t = t0 ∈ [0, T ] is represented by
LRR(ai, t0), where LRR(ai, t0) ∈ [0, 1] . If {w1, w2, ......., wn}represents cor-
responding weights of attributes, the global RR is calculated as follows:
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(a) For bug �xing rate (b) For feature completion rate

Fig. 1.4: Local RR evaluaiton

Fig. 1.5: Global Release Readiness evaluation

GRR(t0) =WAM(LRR(a1, t0), LRR(a2, t0), ......, LRR(an, t0)) =

n∑
i=1

wi××LRR(ai, t0)

(1.6)
For the above example, both RR attributes are considered equally weighted.

Therefore, the global RR GRR (10) is calculated as the arithmetic mean of
local RR value of LRR(BFR,10) and LRR (FCR,10) which is 0.33 and illus-
trated in Fig. 1.5 below.
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1.3.3 Phase 3 � Identifying bottleneck factors

Our selection of attributes and subsequent metrics for this chapter was pri-
marily in�uenced by their (i) acceptance in real world, (ii) availability of
corresponding data in the given repository and (iii) Ease of calculation. Ta-
ble 1.2 presents the results of applying the GQM approach for de�ning RR
metrics corresponding to the RR attributes considered in our study. The
metrics are called RR metrics. For each RR attribute in each project the
number of occurrences the RR attribute became a bottleneck must be cal-
culated as described earlier. As de�ned earlier Bottleneck factor (BF) limits
the performance of the entire system. We de�ne BF as follows:
De�nition (Bottleneck factor): For a given project P and a given week

t = t0 ∈ [0, T ] , the bottleneck factor BF (t0) is a RR attribute ai that has
the lowest Local RR value LRR(ai, t0) among all RR attributes and thus
limits global RR (Eq. (1.6)) value GRR(t0) . at week t = t0.

BF (t0) = argmini(LRR(a1, t0), LRR(a2, t0), ......, LRR(an, t0)) (1.7)

Based on Eq. (1.7), we calculate BF for our project. Eq. (1.7) returns the
index of the bottleneck factor. In our example, FCR represents the bottle-
neck at week 10, as its relative performance is smaller than that of BFR
Multiple RR attributes can become BF in a single observation. To avoid bias
in BF identi�cation, we applied equal weights for RR attributes. Therefore,
WAM from Eq. (1.6) becomes equivalent to arithmetic average, which allows
a simpler BF identi�cation approach using Eq. (1.7).

In order to better understand which RR attributes become bottleneck
factors more or less frequently or whether there are certain conditions or
contexts under which RR attributes become a bottleneck, we plan to compare
the bottleneck frequency of each RR attributes
De�nition (Bottleneck Frequency): For a given project P and a given

time interval [0, T ] , the bottleneck frequency of a RR attribute ai (denoted
by BNF (ai, t0) ) is de�ned as the weekly frequency of aibecoming bottleneck
in achieving RR within T.
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1.3.4 Phase 4 � Cross-project analysis of bottleneck

attributes

To identify (cluster-speci�c) patterns of bottleneck occurrence, per domain
analyses can be conducted answering the questions: i) What are the most
frequently occurring bottleneck attributes (overall and per cluster)? ii) What
project characteristics in�uence the occurrence of bottleneck attributes (over-
all and per cluster)? Example characteristics considered are:

• Project size, i.e., to distinguish between bottleneck attribute occurrence
in large vs. small projects,

• Project team, i.e., to distinguish between bottleneck attribute occurrence
in projects with many contributors of commits vs. those with few contrib-
utors,

• Project phase, i.e., to distinguish between bottleneck attribute occurrence
in early vs. late phases of a release development

Of course, other characteristics can become more relevant for a certain con-
text (company), and should be de�ned and analyzed. Once all data has been
collected and processed, analyses can be conducted to answer the questions of
interest. Based on the results, conclusions can be drawn about the bottleneck
attributes that are most important to be monitored and counter-acted, per
cluster, per project type, and per project stage.

1.3.5 Phase 5-Monitoring and controlling the process:

Controlling and evolution of process is supported by continuously monitoring
actual plan implementation process. Based on accumulated knowledge of bot-
tleneck factors and their characteristics, corresponding metrics are identi�ed
for continuous monitoring. For example, if BFR and FCR are identi�ed for
continuous monitoring, 4BFR(t), 4FCR(t) refer to the deviation between
actual process and predicted process performance related to bug �x rate and
feature completion rate, respectively at any time t. As soon as one of the
factors indicates an out-of-control situation, required changes are initiated
in process towards controlling the situation based on human expertise and
analytical guidelines. `Out-of-control' situations are considered those situa-
tions that fall outside the expected/planned values (after considering common
variation) and indicate existence of an assignable cause of variation.

The release plan represents a schedule and an assignment to features for the
development process of the current release period [0, T ] . Process monitoring
is performed related to the feature completion rate. A continuous monitoring
process checks whether the LRR of FCR is above the tolerance level β1, β2.
Otherwise, an alarm for Out-of-control situation is triggered at t = t∗when
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4LRR(FCR, t∗) < β1 (1.8)

Process monitoring is performed related to the bug �xing rate. If a reliable
initial defect estimation measure exists and bug �xing is monitored continu-
ously, an Out-of-control situation is triggered at time t = t∗ if LRR of BFR
is below tolerance level β2

4LRR(BFR, t∗) < β2 (1.9)

Out-of-control situations are identi�ed with respect to bottleneck factors
identi�ed earlier. Learning these BFs across projects provide guidelines re-
garding their characteristics in di�erent environment and help project man-
agers to control these factors through process evolution.

1.4 Empirical validation

1.4.1 Setup

To validate our proposed approach, we collected data for six RR attributes
(see Table 1.2) from a set of selected 34 di�erent OSS projects of two di�erent
domains over a period of 104 weeks (two years). We selected projects from
two domains i.e. `web-based' (W) and `desktop-based' (D), which are often
relevant for companies. Table 3 shows per domain the 34 projects we selected
(specifying id and name). Each project is characterized by Project id and
name (C1), Number of commits (C2), Number of releases (C3), Number of
di�erent contributors (C4) and Project duration in calendar days (C5). The
data for characteristics was collected for the total lifespan of each project (i.e.,
from project start to observation time). We selected six RR attributes (shown
in Table 1.2) based on comprehensive industry guidelines. In order to cover
both functional and non-functional aspects (release readiness dimensions), we
were interested in assessing RR attributes that satisfy certain goals related
to the implementation and test status in each project.

1.4.2 Data collection and pre-processing

Once the domains, projects and RR attributes are identi�ed, we collected the
raw data for each RR attribute. We analyzed the raw data and calculated for
each RR attributes how often it happened to be a bottleneck. Fig. 1.6 shows
the frequencies of bottleneck occurrences (i.e. bottleneck frequency) for all
RR attributes as box plots.
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C1 C2 C3 C4 C5

Desktop based
projects

D1: Berkshelf/ Berkshelf 3609 97 81 812

D2: Ryanb/ Can can 419 29 62 1710
D3: Celluloid/ Celluloid 1415 45 74 1169
D4: Clinton-hall/
NzbToMedia

1472 0 15 581

D5: Fastly/ Epoch 345 14 6 385
D6: GoldenCheetah/
GoldenCheetah

4016 22 41 1319

D7: Grafana/ Ggrafana 1541 16 70 188
D8: Intridea/ Grape 1802 25 151 1450
D9: Joey711/ Phyloseq 581 0 5 1046
D10: Mybb/ Mybb 1234 37 24 760
D11: Orientechnologies/
Orientdb

7731 21 49 590

D12: Owncloud/ Mirall 5865 43 42 681
D13: Python-pillow/
Pillow

2336 15 95 729

D14: Resque/ Resque 1910 70 229 1723
D15: Scikit-learn/
Scikit-learn

16816 58 282 1422

D16: SynoCommunity/
Spksrc

1754 0 41 1011

D17: Zfsonlinux/ Zfs 1408 30 104 1531
Web Projects W1: Adobe/ Adobe 13887 53 225 958

W2: Att/ Rcloud 2842 12 11 712
W3: Automattic/
Socket.io

1293 89 68 1589

W4: Locomotivecms/
Engine

2209 36 80 1429

W5: FortAwesome/
Font-Awesome

573 14 28 869

W6: Gravitystorm/
Openstreetmap-carto

595 29 29 598

W7: H5bphtml5/
Boilerplate

1340 24 175 1641

W8: Hawtio/ Hawtio 5920 51 45 594
W9: Highslide-software/
Highcharts.com

4109 71 31 1498

W10: Hypothesis/ H 3851 9 18 831
W11: Jashkenas/
Backbone

2629 21 228 1379

W12: MayhemYDG/
4chan-x

5151 192 35 1017

W13: Mbostock/ D3 3207 173 78 1393
W14: Moment/ Moment 2050 36 204 1160
W15: Imathis/ Octopress 808 1 103 1683
W16: Travis-ci/ Travis-ci 3602 232 94 1241
W17: Webbukkit/
Dynmap

1738 67 14 1295
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Fig. 1.6: Bottleneck frequency of all six RR attributes for both D and W-type
projects

For each RR attribute, the ranges of frequencies are given for both D
and W-type projects. For example, we can see that the mean value for RR
attribute PCR being a bottleneck across all projects over the whole period is
above 70 for D-type projects and above 80 for W-type projects

1.4.3 Cross-project analysis of BF

Once we knew for each project how often a RR attribute occurred as a bot-
tleneck attribute, we conducted further analyses. First, we wanted to know
common patterns of BN frequency i.e. whether some RR attributes occur
more frequently than others do or whether there is a di�erence between the
rankings of RR attributes between the two domains we selected. Fig. 1.7
shows the Pareto charts for both domains. Clearly, the bottleneck frequency
patterns and rankings are very similar among domains. In particular, in both
domains, the same three RR attributes (PCR, FCR, and BFR) account for
more than 80% of all bottleneck occurrences. In addition, the ranking of most
frequent three bottleneck factors is similar in both domains. This implies that
an engineer or manager can focus on controlling the top-most RR attribute(s)
if resources are scarce.

Next, we were interested whether the occurrence frequencies of bottleneck
attributes di�er depending on certain project characteristics. In our case, we
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(a) Desktop-based projects (b) web-based projects

Fig. 1.7: Pareto charts for bottleneck factor occurrence frequencies

looked at three project characteristics, i.e., size (measured as # of commits),
team dispersion (measured as # of di�erent contributors), and release devel-
opment phase. In order to determine the early and late phase of a release
development of a project, we split each release development into two equal
parts, early and late phase. For example, if 16 releases were observed for a
project (see column # of Releases in Error! Reference source not found.),
we have 16 early phases and 16 late phases and we can count how often a
certain RR attribute happened to be a bottleneck attribute during each of
these phases.

We applied non-parametric statistical testing (Mann-Whitney U test) to
check whether frequency occurrences were signi�cantly di�erent per RR at-
tributes in a given domain. Fig 1.8 shows per domain the split of occurrence
frequencies for all six RR attributes regarding size, team dispersion, and re-
lease development phase. The symbol `**' next to the RR attribute name
indicates that the occurrence frequency of the respective attribute is signi�-
cantly di�erent at an alpha-level of 5%.

We found three di�erent patterns: i) Distinguishing projects with regards
to size does not show any signi�cant di�erence in the occurrence frequency
of bottleneck attributes in both domains, ii) Distinguishing projects with
regards to phase does always show signi�cant di�erence in the occurrence
frequency of bottleneck attributes for all RR attributes in both domains, 3)
Distinguishing projects with regards to team does not show any signi�cant
di�erence for desktop-based projects but does show signi�cant di�erence for
RR attribute PCR for web-based projects. In other words, it makes a di�er-
ence whether one monitors the occurrence frequency of bottleneck attributes
for di�erent domains and di�erent project related criteria.

In our example, all RR attributes show an almost uniform behavior de-
pending on domain and characteristic. This might not always be the case.
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Fig. 1.8: Frequency of occurrence of bottleneck factors by project size (top),
project team (middle), project phase (bottom) in desktop-based (left) and
web-based (right) projects.

Then it might be most interesting to focus on the RR attribute that occurs
most frequently as a bottleneck overall, i.e., PCR. The bene�t from doing
such a kind of analysis is that a company with large portfolios of projects
(and related repositories) can use this kind of information to focus their e�ort
spent on monitoring RR attributes where it really matters.

1.4.4 Applicability of �ndings

Knowledge regarding bottleneck factors helps to identify RR attributes re-
sponsible for limiting RR. Early identi�cation of bottleneck factors is ex-
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pected to help release engineers in proactively addressing potential resources
limitations and recommend the course of action. However, this information is
not easily available. The proposed method introduces a systematic learning
approach from self/external experience of former releases. A comprehensive
initial validation is conducted with respect to OSS projects. Proposed method
and �ndings from initial investigation can be applied in RR evaluation and
corresponding recommendation in meaningful ways:

• Identify in�uential bottleneck factors that can limit RR in di�erent phases
of the releases

• Pro-actively utilize information regarding project characteristics in�uence
on variation of bottleneck factors

• Recommend project teams in better resource allocation based on volatility
of the bottleneck factors

1.5 Summary and Future research

Release management is a decision-centric process with a number of criteria,
stakeholders and constraints involved. The impact of releasing a product too
early or too late can be catastrophic. In the trade-o� between quality, release
time and delivery of functionality as requested by customers, ad-hoc decisions
potentially cause signi�cant risks to projects and organizations. With special
emphasis on release readiness, we propose an analytical approach to monitor,
analyze bottleneck factors and improve release readiness. Even though some
of the required data are uncertain and challenging to acquire, the results
presented in this chapter indicate that there are substantial di�erences in
the occurrence of bottleneck attributes in achieving release readiness. The
di�erences are between the attributes that have been studied in this chapter,
as well as between two domains where OSS projects studied were taken from.

This study is considered as an initial phase of more comprehensive analysis
with focus on evaluation and optimization of software release readiness. Due
to unavailability of proprietary software, we validated our method based on
OSS projects. We plan to broaden the project scope to proprietary projects
and comparison of results with observations from other OSS projects. This
work started to establish release decisions on objective data and analytical
precision. As a form of decision support, the full value of the analytical result
can only be achieved from a proper process of data collection and analysis,
combined with the proper involvement of the release engineers. The proposed
method needs further analysis and evaluation of its applicability and useful-
ness. There are more advance models to integrate multiple attributes such
as the Ordered Weighted Averaging (OWA) aggregation operator introduced
by Yager. In addition, the importance of the local RR attributes is changing
in the course of a release, with emphasis on testing towards the end, which
needs to be considered as well. Practical guidelines are needed in terms of the
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requested attribute performances to facilitate release delivery in-time and in
quality. Instead of just counting the frequencies of occurrence, future work
will also include the estimates on e�ort needed to reduce the gap between
expected and actual performance.
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